

Proceedings
2nd International Workshop on
Mining Software Repositories

MSR 2005

Proceedings
2nd International Workshop on
Mining Software Repositories

MSR 2005

Saint Louis, Missouri, USA
17th May 2004

Co-located With
International Conference on

Software Engineering
(ICSE 2005)

Edited by
Ahmed E. Hassan, Richard C. Holt, and Stephan Diehl

Contents
International Workshop on Mining Software Repositories

MSR 2005

Message from the Workshop Chairs.. i
Program Committee.. ii
Additional Reviewers ... ii
Program..iii

Understanding Evolution and Change Patterns

Understanding Source Code Evolution Using Abstract Syntax Tree Matching...........................2
 Iulian Neamtiu, Jeffrey Foster, and Michael Hicks
Recovering System Specific Rules from Software Repositories……………...............................7
 Chadd Williams, and Jeffrey K. Hollingsworth
Mining Evolution Data of a Product Family…………...12
 Michael Fischer, Johann Oberleitner, Jacek Ratzinger, and Harald Gall
Using a Clone Genealogy Extractor for Understanding and Supporting Evolution of Code
Clones …………..17
 Miryung Kim, and David Notkin

Defect Analysis

When do changes induce fixes?...24
 Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller
Error Detection by Refactoring Reconstruction…………………………………….....................29

Carsten Görg, and Peter Weißgerber

Education

Software Repository Mining with Marmoset: An Automated Programming Project Snapshot and
Testing System...36
 Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh
Mining Student CVS Repositories for Performance Indicators...41
 Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson

Text Mining

Toward Mining "Concept Keywords" from Identifiers in Large Software Projects......................48
 Masaru Ohba, and Katsuhiko Gondow
Source code that talks: an exploration of Eclipse task comments and their implication to
repository mining ...53
 Annie Ying, James Wright, and Steven Abrams
Text Mining for Software Engineering: How Analyst Feedback Impacts Final Results…...........58

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundara

 Software Changes and Evolution

Analysis of Signature Change Patterns..64
 Sunghun Kim, James Whitehead, and Jennifer Bevan
Improving Evolvability through Refactoring..69
 Jacek Ratzinger, Michael Fischer, Johann Oberleitner, and Harald Gall
Linear Predictive Coding and Cepstrum coefficients for mining time variant information from
software repositories...74
 Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi

Process and Collaboration

Repository Mining and Six Sigma for Process Improvement...80
 Michael VanHilst, Pankaj Garg, and Christopher Lo
Mining Version Histories for Verifying Learning Process of Legitimate Peripheral
Participants…………………...84
 Shih-Kun Huang, and Kang-Min Liu

Taxonomies & Formal Representations

Towards a Taxonomy of Approaches for Mining of Source Code Repositories.........................90
 Huzefa Kagdi, Michael Collard, and Jonathan Maletic
A Framework for Describing and Understanding Mining Tools in Software Development….....95
 Daniel German, Davor Cubranic, and Margaret-Anne D. Storey
SCQL: A formal model and a query language for source control repositories………………....100
 Abram Hindle, and Daniel German

Integration and Collaboration

Developer identification methods for integrated data from various sources……......................106
 Gregorio Robles, and Jesús M. González-Barahona
Accelerating Cross-Project knowledge Collaboration Using Collaborative Filtering and Social
Networks…..111
 Masao Ohira, Naoki Ohsugi, Tetsuya Ohoka, and Ken-ichi Matsumoto
Collaboration Using OSSmole: A repository of FLOSS data and analyses………..................116
 Megan Conklin, James Howison, and Kevin Crowston

Message From Workshop Chairs

MSR 2005

Welcome to MSR 2005, the 2nd international workshop on Mining Software Repositories.
MSR 2005 brings together researchers and practitioners to consider methods of using
data stored in software repositories to further understanding of software development
practices. We expect the presentations and discussions in this workshop to facilitate the
definition of challenges, ideas and approaches to transform software repositories from
static record keeping systems to active repositories used by researchers to gain empirical
understanding of software development, and by software practitioners to predict and plan
various aspects of their project.

We received a large number of submissions – 38 papers from 14 countries. After the
review process, 22 papers were chosen for publication. All accepted papers are presented.
In order to fit all talks within the workshop day and based on input from the Program
Committee during the review process, 11 papers are presented as Regular talks and 11
papers are presented as Lightning talks. Following the Lightning talks, we allocated an
hour of informal discussions and demos, in which attendees are encouraged to interact
with all presenters on topics of interest.

We are grateful for the excellent and professional review job done by the reviewers on
such a tight schedule.

Ahmed E. Hassan
Richard C. Holt

 University of Waterloo

Stephan Diehl
 Catholic University Eichstätt

i

Program Committee

MSR 2005
Alexander Dekhtyar, University of Kentucky, USA
Premkumar T. Devanbu, University of California at Davis, USA
Stephen G. Eick, SSS Research Inc., USA
Harald Gall, University of Zurich, Switzerland
Les Gasser, University of Illinois at Urbana Champaign, USA
Daniel German, University of Victoria, Canada
Jane Huffman Hayes, University of Kentucky, USA
Katsuro Inoue, Osaka University, Japan
Philip Johnson, University of Hawaii, USA
Timothy C. Lethbridge, University of Ottawa, Canada
Gail Murphy, University of British Colombia, Canada
Audris Mockus, Avaya Labs Research, USA
Thomas J. Ostrand, AT&T Research, USA
Dewayne Perry, University of Texas, USA
Jelber Sayyad Shirabad, University of Ottawa, Canada
Annie Ying, IBM Research, USA
Andreas Zeller, Saarland University, Germany

Additional Reviewers

MSR 2005
Davor Cubranic, University of Victoria, Canada
Cory Kapser, University of Waterloo, Canada
Jingwei Wu, University of Waterloo, Canada
Thomas Zimmermann, Saarland University, Germany

ii

MSR 2005: International Workshop on Mining Software Repositories
msr.uwaterloo.ca

9:00-9:15 Welcome and Introduction [slides]
 Ahmed E. Hassan, Richard C. Holt, and Stephan Diehl

9:15-10:30

Session 1: Understanding Evolution and Change Patterns

Understanding Source Code Evolution Using Abstract Syntax Tree Matching [slides]
Iulian Neamtiu, Jeffrey Foster, and Michael Hicks (University of Maryland)
Recovering System Specific Rules from Software Repositories [slides]
Chadd Williams, and Jeffrey K. Hollingsworth (University of Maryland)
Mining Evolution Data of a Product Family [slides]
Michael Fischer, Johann Oberleitner, Jacek Ratzinger (Vienna University of Technology), and Harald
Gall (University of Zürich)
Using a Clone Genealogy Extractor for Understanding and Supporting Evolution of
Code Clones [slides]
Miryung Kim, and David Notkin (University of Washington)

10:30-11:00 Coffee Break

11:00-11:45

Session 2: Defect Analysis

When do changes induce fixes? [slides]
Jacek Sliwerski (Max Planck Institute for Computer Science), Thomas Zimmermann, and Andreas
Zeller (Saarland University)
Error Detection by Refactoring Reconstruction [slides]
Carsten Görg (Saarland University), and Peter Weißgerber (Catholic University Eichstätt)

11:45-12:30

Session 3: Education

Software Repository Mining with Marmoset: An Automated Programming Project
Snapshot and Testing System [slides]
Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh (University of Maryland)
Mining Student CVS Repositories for Performance Indicators [slides]
Keir Mierle,Kevin Laven, Sam Roweis, and Greg Wilson (University of Toronto)

12:30-1:45 Lunch

iii

1:45-3:45

Session 4: Lightning Talks (5 mins each) and Walkaround Presentations [info]

Session 4A: Text Mining
Toward Mining "Concept Keywords" from Identifiers in Large Software Projects [slides]
Masaru Ohba, and Katsuhiko Gondow (Tokyo Institute of Technology)
Source code that talks: an exploration of Eclipse task comments and their implication to
repository mining [slides]
Annie Ying, James Wright, and Steven Abrams (IBM Research)
Text Mining for Software Engineering: How Analyst Feedback Impacts Final Results [slides]
Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram (University of Kentucky)

Session 4B: Software Changes and Evolution
Analysis of Signature Change Patterns [slides]
Sunghun Kim, James Whitehead, and Jennifer Bevan (University of California, Santa Cruz)
Improving Evolvability through Refactoring [slides]
Jacek Ratzinger, Michael Fischer, Johann Oberleitner (Vienna University of Technology), and Harald Gall (University of
Zürich)
Linear Predictive Coding and Cepstrum coefficients for mining time variant information from
software repositories [slides]
Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi (University of Sannio)

Session 4C: Process and Collaboration
Repository Mining and Six Sigma for Process Improvement [slides]
Michael VanHilst (Florida Atlantic University), Pankaj Garg (Zee Source), and Christopher Lo (Florida Atlantic University)
Mining Version Histories for Verifying Learning Process of Legitimate Peripheral Participants
[slides]
Shih-Kun Huang, and Kang-Min Liu (National Chiao Tung University)

Session 4D: Taxonomies & Formal Representations
Towards a Taxonomy of Approaches for Mining of Source Code Repositories [slides]
Huzefa Kagdi, Michael Collard, and Jonathan Maletic (Kent State University)
A Framework for Describing and Understanding Mining Tools in Software Development [slides]

Daniel German, Davor Cubranic, and Margaret-Anne D. Storey (University of Victoria)
SCQL: A formal model and a query language for source control repositories [slides]
Abram Hindle, and Daniel German (University of Victoria)

3:45-4:00 Coffee Break

4:00-5:00

Session 5: Integration and Collaboration

Developer identification methods for integrated data from various sources [slides]
Gregorio Robles, and Jesús M. González-Barahona (Universidad Rey Juan Carlos)
Accelerating cross-project knowledge collaboration using collaborative filtering and
social networks [slides]
Masao Ohira, Naoki Ohsugi, Tetsuya Ohoka, and Ken-ichi Matsumoto (Nara Institute of Science and
Technology)
Collaboration Using OSSmole: A repository of FLOSS data and analyses [slides]
Megan Conklin (Elon University), James Howison, and Kevin Crowston (Syracuse University)

5:00-5:30 Wrap-up: Common Themes and Future Direction [slides]
 Ahmed E. Hassan, Richard C. Holt and Stephan Diehl

iv

 Understanding Evolution and Change Patterns

1

Understanding Source Code Evolution Using Abstract
Syntax Tree Matching

Iulian Neamtiu
neamtiu@cs.umd.edu

Jeffrey S. Foster
jfoster@cs.umd.edu

Michael Hicks
mwh@cs.umd.edu

Department of Computer Science
University of Maryland at College Park

ABSTRACT
Mining software repositories at the source code level can pro-
vide a greater understanding of how software evolves. We
present a tool for quickly comparing the source code of dif-
ferent versions of a C program. The approach is based on
partial abstract syntax tree matching, and can track sim-
ple changes to global variables, types and functions. These
changes can characterize aspects of software evolution use-
ful for answering higher level questions. In particular, we
consider how they could be used to inform the design of a
dynamic software updating system. We report results based
on measurements of various versions of popular open source
programs, including BIND, OpenSSH, Apache, Vsftpd and
the Linux kernel.

Categories and Subject Descriptors
F.3.2 [Logics And Meanings Of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms
Languages, Measurement

Keywords
Source code analysis, abstract syntax trees, software evolu-
tion

1. INTRODUCTION
Understanding how software evolves over time can im-

prove our ability to build and maintain it. Source code
repositories contain rich historical information, but we lack
effective tools to mine repositories for key facts and statistics
that paint a clear image of the software evolution process.

Our interest in characterizing software evolution is mo-
tivated by two problems. First, we are interested in dy-
namic software updating (DSU), a technique for fixing bugs
or adding features in running programs without halting ser-
vice [4]. DSU can be tricky for programs whose types change,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

so understanding how the type structure of real programs
changes over time can be invaluable for weighing the merits
of DSU implementation choices. Second, we are interested in
a kind of “release digest” for explaining changes in a software
release: what functions or variables have changed, where the
hot spots are, whether or not the changes affect certain com-
ponents, etc. Typical release notes can be too high level for
developers, and output from diff can be too low level.

To answer these and other software evolution questions,
we have developed a tool that can quickly tabulate and sum-
marize simple changes to successive versions of C programs
by partially matching their abstract syntax trees. The tool
identifies the changes, additions, and deletions of global vari-
ables, types, and functions, and uses this information to re-
port a variety of statistics.

Our approach is based on the observation that for C pro-
grams, function names are relatively stable over time. We
analyze the bodies of functions of the same name and match
their abstract syntax trees structurally. During this process,
we compute a bijection between type and variable names in
the two program versions. We then use this information to
determine what changes have been made to the code. This
approach allows us to report a name or type change as single
difference, even if it results in multiple changes to the source
code. For example, changing a variable name from x to y

would cause a tool like diff to report all lines that formerly
referred to x as changed (since they would now refer to y),
even if they are structurally the same. Our system avoids
this problem.

We have used our tool to study the evolution history of a
variety of popular open source programs, including Apache,
OpenSSH, Vsftpd, Bind, and the Linux kernel. This study
has revealed trends that we have used to inform our de-
sign for DSU. In particular, we observed that function and
global variable additions are far more frequent than dele-
tions; the rates of addition and deletion vary from program
to program. We also found that function bodies change
quite frequently over time, but function prototypes change
only rarely. Finally, type definitions (like struct and union

declarations) change infrequently, and often in simple ways.

2. APPROACH
Figure 1 provides an overview of our tool. We begin by

parsing the two program versions to produce abstract syn-
tax trees (ASTs), which we traverse in parallel to collect
type and name mappings. With the mappings at hand, we
then detect and collect changes to report to the user, either

2

AST 1

Parser

Parser

AST 2

Program version 1

Program version 2

Facts Processor
Type Matchings

Bijection Computation
Changes

&
Statistics

Change

DetectorName Matchings

Figure 1: High level view of AST matching

typedef int s z t ;
int count ;
struct f oo {

int i ;
f loat f ;
char c ;

} ;
int baz (int a , int b) {

struct f oo s f ;
s z t c = 2 ;
s f . i = a + b + c ;
count++;

}

int counter ;
typedef int s i z e t ;
struct bar {

int i ;
f loat f ;
char c ;

} ;
int baz (int d , int e) {

struct bar sb ;
s i z e t g = 2 ;
sb . i = d + e + g ;
counter++;

}
void b i f f (void) { }

Figure 2: Two successive program versions

directly or in summary form. In this section, we describe
the matching algorithm, illustrate how changes are detected
and reported, and describe our implementation and its per-
formance.

2.1 AST Matching
Figure 2 presents an example of two successive versions

of a program. Assuming the example on the left is the
initial version, our tool discovers that the body of baz is
unchanged—which is what we would like, because even though
every line has been syntactically modified, the function in
fact is structurally the same, and produces the same out-
put. Our tool also determines that the type sz t has been
renamed size t, the global variable count has been renamed
counter, the structure foo has been renamed bar, and the
function biff() has been added. Notice that if we had done
a line-oriented diff instead, nearly all the lines in the pro-
gram would have been marked as changed, providing little
useful information.

To report these results, the tool must find a bijection be-
tween the old and new names in the program, even though
functions and type declarations have been reordered and
modified. To do this, the tool begins by finding function
names that are common between program versions; our as-
sumption is that function names do not change very often.
The tool then uses partial matching of function bodies to
determine name maps between old and new versions, and
finally tries to find bijections i.e., one-to-one, onto submaps
of the name maps.

We traverse the ASTs of the function bodies of the old and
new versions in parallel, adding entries to a LocalNameMap
and GlobalNameMap to form mappings between local vari-
able names and global variable names, respectively. Two
variables are considered equal if we encounter them in the
same syntactic position in the two function bodies. For ex-
ample, in Figure 2, parallel traversal of the two versions of
baz results in the LocalNameMap

a↔ d, b↔ e, sf↔ sb, c↔ g

and a GlobalNameMap with count ↔ counter. Similarly,

procedure GenerateMaps(V ersion1, V ersion2)
F1 ← set of all functions in Version 1
F2 ← set of all functions in Version 2
global TypeMap← ∅
global GlobalNameMap← ∅
for each function f ∈ F1 ∩ F2

do

8<:AST1 ← AST of f in Version 1
AST2 ← AST of f in Version 2
Match Ast(AST1, AST2)

procedure Match Ast(AST1, AST2)
local LocalNameMap← ∅
for each (node1, node2) ∈ (AST1, AST2)

do

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

if (node1, node2) = (t1 x1, t2 x2) //declaration

then


TypeMap← TypeMap ∪ {t1 ↔ t2}
LocalNameMap← LocalNameMap ∪ {x1 ↔ x2}

else if (node1, node2) = (y1 := e1 op e′
1, y2 := e2 op e′

2)

then

8>>>>><>>>>>:

Match Ast(e1, e2)
Match Ast(e′

1, e′
2)

if isLocal(y1) and isLocal(y2) then
LocalNameMap← LocalNameMap ∪ {y1 ↔ y2}
else if isGlobal(y1) and isGlobal(y2) then
GlobalNameMap← GlobalNameMap ∪ {y1 ↔ y2}

else if . . .
else break

Figure 3: Map Generation Algorithm

we form a TypeMap between named types (typedefs and
aggregates) that are used in the same syntactic positions
in the two function bodies. For example, in Figure 2, the
name map pair sb ↔ sf will introduce a type map pair
struct foo↔ struct bar.

We define a renaming to be a name or type pair j1 → j2
where j1 ↔ j2 exists in the bijection, j1 does not exist in the
new version, and j2 does not exist in the old version. Based
on this definition, our tool will report count → counter

and struct foo → struct bar as renamings, rather than
additions and deletions. This approach ensures that consis-
tent renamings are not presented as changes, and that type
changes are decoupled from value changes, which helps us
better understand how types and values evolve.

Figure 3 gives pseudocode for our algorithm. We accumu-
late global maps TypeMap and GlobalNameMap, as well as
a LocalNameMap per function body. We invoke the routine
Match Ast on each function common to the two versions.
When we encounter a node with a declaration t1 x1 (a dec-
laration of variable x1 with type t1) in one AST and t2 x2

in the other AST, we require x1 ↔ x2 and t1 ↔ t2. Sim-
ilarly, when matching statements, for variables y1 and y2

occurring in the same syntactic position we add type pairs
in the TypeMap, as well as name pairs into LocalNameMap
or GlobalNameMap, depending on the storage class of y1

and y2. LocalNameMap will help us detect functions which
are identical up to a renaming of local and formal variables,
and GlobalNameMap is used to detect renamings for global
variables and functions. As long as the ASTs have the same
shape, we keep adding pairs to maps. If we encounter an
AST mismatch (the break statement on the last line of the
algorithm), we stop the matching process for that function
and use the maps generated from the portion of the tree
that did match.

3

------- Global Variables ----------
Version1 : 1
Version2 : 1
renamed : 1

------- Functions -----------------
Version1 : 1
Version2 : 2
added : 1
locals/formals name changes : 4

------- Structs/Unions ------------
Version1 : 1
Version2 : 1
renamed : 1

------- Typedefs -----------------
Version1 : 1
Version2 : 1
renamed : 1

Figure 4: Summary output produced for the code in Figure 2

The problem with this algorithm is that having insufficient
name or type pairs could lead to renamings being reported
as additions/deletions. The two reasons why we might miss
pairs are partial matching of functions and function renam-
ings. As mentioned previously, we stop adding pairs to maps
when we detect an AST mismatch, so when lots of functions
change their bodies, we miss name and type pairs. This
could be mitigated by refining our AST comparison to re-
cover from a mismatch and continue matching after detect-
ing an AST change. Because renamings are detected in the
last phase of the process, functions that are renamed don’t
have their ASTs matched, another reason for missing pairs.
In order to avoid this problem, the bijection computation
and function body matching would have to be iterated until
a fixpoint is reached.

In practice, however, we found the approach to be re-
liable. For the case studies in section 3, we have manually
inspected the tool output and the source code for renamings
that are improperly reported as additions and deletions due
to lack of constraints. We found that a small percentage
(less than 3% in all cases) of the reported deletions were ac-
tually renamings. The only exception was an early version
of Apache (versions 1.2.6-1.3.0) which had significantly more
renamings, with as many as 30% of the reported deletions
as spurious.

2.2 Change Detection and Reporting
With the name and type bijections in hand, the tool vis-

its the functions, global variables, and types in the two pro-
grams to detect changes and collect statistics. We categorize
each difference that we report either as an addition, deletion,
or change.

We report any function names present in one file and not
the other as an addition, deletion, or renaming as appro-
priate. For functions in both files, we report that there is
a change in the function body if there is a difference be-
yond the renamings that are represented in our name and
type bijections. This can be used as an indication that the
semantics of the function has changed, although this is a
conservative assumption (i.e., semantics preserving trans-
formations such as code motion are flagged as changes). In
our experience, whenever the tool detects an AST mismatch,
manual inspection has confirmed that the function seman-

/ : 111
include/ : 109

linux/ : 104
fs.h : 4
ide.h : 88
reiserfs_fs_sb.h : 1
reiserfs_fs_i.h : 2
sched.h : 1
wireless.h : 1
hdreg.h : 7

net/ : 2
tcp.h : 1
sock.h : 1

asm-i386/ : 3
io_apic.h : 3

drivers/ : 1
char/ : 1

agp/ : 1
agp.h : 1

net/ : 1
ipv4/ : 1

ip_fragment.c : 1

Figure 5: Density tree for struct/union field additions
(Linux 2.4.20 vs. 2.4.21)

 0
 10
 20
 30
 40
 50
 60
 70

 0 50000 100000 150000 200000 250000 300000 350000 400000

Ti
m

e
(s

)

Source code size (LOC)

Total
Parsing

Figure 6: Performance

tics has indeed changed.
We similarly report additions, deletions and renamings of

global variables, and changes in global variable types and
static initializers.

For types we perform a deep structural isomorphism check,
using the type bijection to identify which types should be
equal. We report additions, deletions, or changes in fields
for aggregate types; additions, deletions, or changes to base
types for typedefs; and additions, deletions, or changes in
item values for enums.

Our tool can be configured to either report this detailed
information or to produce a summary. For the example
in Figure 2, the summary output is presented in Figure 4.
In each category, Version1 represents the total number of
items in the old program, and Version2 in the new program.
For brevity we have omitted all statistics whose value was 0
e.g., enums, etc.

Our tool can also present summary information in the
form of a density tree, which shows how changes are dis-
tributed in a project. Figure 5 shows the density tree for
the number of struct and union fields that were added be-
tween Linux versions 2.4.20 and 2.4.21. In this diagram,
changes reported at the leaf nodes (source files) are propa-
gated up the branches, making clusters of changes easy to
visualize. In this example, the include/linux/ directory
and the include/linux/ide.h header file have a high den-
sity of changes.

2.3 Implementation
Our tool is constructed using CIL, an OCaml framework

4

-400
-200

 0
 200
 400
 600
 800

 1000
 1200
 1400

01/00 01/01 12/01 12/02 12/03 12/04

OpenSSH

-100
 0

 100
 200
 300
 400
 500
 600
 700
 800

12/01 12/02 12/03 12/04

Vsftpd

Total
Added

Deleted -200

 0

 200

 400

 600

 800

 1000

 1200

01/99 01/00 01/01 12/01 12/02

Apache

Figure 7: Function and global variable additions and deletions

 0

 500

 1000

 1500

 2000

 2500

 3000

01/00 01/01 12/01 12/02 12/03 12/04

OpenSSH

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

12/01 12/02 12/03 12/04

Vsftpd

Functions
Body changes
Prototype changes

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

01/99 01/00 01/01 12/01 12/02

Apache

Figure 8: Function body and prototype changes

for C code analysis [3] that provides ASTs as well as some
other high-level information about the source code. We have
used it to analyze the complete lifetime of Vsftpd (a “very
secure” FTP server, see http://beasts.vsftpd.org/) and
OpenSSH (daemon); 8 snapshots in the lifetime of Apache
1.x; and portions of the lifetimes1 of the Linux kernel (ver-
sions 2.4.17, Dec. 2001 to 2.4.21, Jun. 2003) and BIND
(versions 9.2.1, May 2002 to 9.2.3, Oct. 2003).

Figure 6 shows the running time of the tool on these ap-
plications (we consider the tool’s results below), plotting
source code size versus running time.2 The top line is the
total running time while the bottom line is the portion of the
running time that is due to parsing, provided by CIL (thus
the difference between them is our analysis time). Our algo-
rithm scales roughly linearly with program size, with most
of the running time spent in parsing. Computing changes
for two versions of the largest test program takes slightly
over one minute. The total time for running the analysis
on the full repository (i.e., all the versions) for Vsftpd was
21 seconds (14 versions), for OpenSSH was 168 seconds (25
versions), and for Apache was 42 seconds (8 versions).

3. CASE STUDY: DYNAMIC SOFTWARE
UPDATING

This section explains how we used the tool to characterize
software change to guide our design of a dynamic software
updating (DSU) methodology [4]. We pose three questions
concerning code evolution; while these are relevant for DSU,
we believe they are of general interest as well. We answer

1Analyzing earlier versions would have required older ver-
sions of gcc.
2Times are the average of 5 runs. The system used for exper-
iments was a dual Xeon@2GHz with 1GB of RAM running
Fedora Core 3.

these questions by using the output of our tool on the pro-
grams mentioned above, which are relevant to DSU because
they are long-running.

Are function and variable deletions frequent, relative
to the size of the program?When a programmer deletes
a function or variable, we would expect a DSU implementa-
tion to delete that function from the running program when
it is dynamically updated. However, implementing on-line
deletion is difficult, because it is not safe to delete functions
that are currently in use (or will be in the future). There-
fore, if definitions are rarely deleted over a long period, the
benefit of cleaning up dead code may not be worth the cost
of implementing a safe mechanism to do so. Figure 7 illus-
trates how OpenSSH, Vsftpd, and Apache have evolved over
their lifetime. The x-axis plots time, and the y-axis plots the
number of function and global variable definitions for vari-
ous versions of these programs. Each graph shows the total
number of functions and global variables for each release,
the cumulative number of functions/variables added, and
the cumulative number of functions/variables deleted (dele-
tions are expressed as a negative number, so that the sum
of deletions, additions, and the original program size will
equal its current size). The rightmost points show the cur-
rent size of each program, and the total number of additions
and deletions to variables and functions over the program’s
lifetime.

According to the tool, Vsftpd and Apache delete almost
no functions, but OpenSSH deletes them steadily. For the
purposes of our DSU question, Vsftpd and Apache could
therefore reasonably avoid removing dead code, while do-
ing so for OpenSSH would have a more significant impact
(assuming functions are similar in size).

Are changes to function prototypes frequent?Many DSU
methodologies cannot update a function whose type has

5

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4 5 6 7

re
la

tiv
e

fr
eq

ue
nc

y
(%

)

fields added/deleted

Linux
Vsftpd

Apache
OpenSSH

Bind

Figure 9: Classifying changes to types

changed. If types of functions change relatively infrequently,
then this implementation strategy may be able to support a
large number of updates. Figure 8 presents graphs similar
to those in Figure 7. For each program, we graph the total
number of functions, the cumulative number of functions
whose body has changed, and the cumulative number of
functions whose prototype has changed. As we can see from
the figure, changes in prototypes are relatively infrequent for
Apache and Vsftpd, especially compared to changes more
generally. In contrast, functions and their prototypes have
changed in OpenSSH far more rapidly, with the total num-
ber of changes over five years roughly four times the current
number of functions, with a fair number of these resulting in
changes in prototypes. In all cases we can see some changes
to prototypes, meaning that supporting prototype changes
in DSU is a good idea.

Are changes to type definitions relatively simple?In
most DSU systems, changes to type definitions (which in-
clude struct, union, enum, and typedef declarations in C
programs) require an accompanying type transformer func-
tion to be supplied with the dynamic update. Each existing
value of a changed type is converted to the new represen-
tation using this transformer function. Of course, this ap-
proach presumes that such a transformer function can be
easily written. If changes to type definitions are fairly com-
plex, it may be difficult to write a transformer function.

Figure 9 plots the relative frequency of changes to struct,
union, and enum definitions (the y-axis) against the number
of fields (or enumeration elements for enums) that were added
or deleted in a given change (the x-axis). The y-axis is pre-
sented as a percentage of the total number of type changes
across the lifetime of the program. We can see that most
type changes affect predominantly one or two fields. An ex-
ception is OpenSSH, where changing more than two fields
is common; it could be that writing type transformers for
OpenSSH will be more difficult. We also used the tool to
learn that fields do not change type frequently (not shown
in the figure).

4. RELATED WORK
A number of systems for identifying differences between

programs have been developed. We discuss a few such sys-
tems briefly.

Yang [5] developed a system for identifying “relevant” syn-
tactic changes between two versions of a program, filtering
out irrelevant ones that would be produced by diff. Yang’s
solution matches parse trees (similar to our system) and
can even match structurally different trees using heuristics.
In contrast, our system stops at the very first node mis-
match in order not to introduce spurious name or type bi-
jections. Yang’s tool cannot deal with variable renaming

or type changes, and in general focuses more on finding a
maximum syntactic similarity between two parse trees. We
take the semantics of AST nodes into account, distinguish
between different program constructs (e.g., types, variables
and functions) and specific changes associated with them.

Horwitz [1] proposed a system for finding semantic, rather
than syntactic, changes in programs. Two programs are
semantically identical if the sequence of observable values
they produce is the same, even if they are textually differ-
ent. For example, with this approach semantics-preserving
transformations such as code motion or instruction reorder-
ing would not be flagged as a change, while they would in
our approach. Horwitz’s algorithm runs on a limited subset
of C that does not include functions, pointers, or arrays.

Jackson and Ladd [2] propose a differencing tool that an-
alyzes two versions of a procedure to identify changes in
dependencies between formals, locals, and globals. Their
approach is insensitive to local variable names, like our ap-
proach, but their system performs no global analysis, does
not consider type changes, and sacrifices soundness for the
sake of suppressing spurious differences.

5. CONCLUSION
We have presented an approach to finding semantic dif-

ferences between program versions based on partial abstract
syntax tree matching. Our algorithm uses AST matching to
determine how types and variable names in different versions
of a program correspond. We have constructed a tool based
on our approach and used it to analyze several popular open
source projects. We have found that our tool is efficient and
provides some insights into software evolution.

We have begun to extend the tool beyond matching ASTs,
to measure evolution metrics such as common coupling or
cohesion [6]. We are interested in analyzing more programs,
with the hope that the tool can be usefully applied to shed
light on a variety of software evolution questions.

6. REFERENCES
[1] S. Horwitz. Identifying the semantic and textual

differences between two versions of a program. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 234–245, June 1990.

[2] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM), pages 243–252, Sept. 1994.

[3] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs. Lecture Notes in
Computer Science, 2304:213–228, 2002.

[4] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and
I. Neamtiu. Mutatis Mutandis: Safe and flexible
dynamic software updating. In Proceedings of the ACM
SIGPLAN/SIGACT Conference on Principles of
Programming Languages (POPL), pages 183–194,
January 2005.

[5] W. Yang. Identifying Syntactic differences Between
Two Programs. Software - Practice and Experience,
21(7):739–755, 1991.

[6] E. Yourdon and L. L. Constantine. Structured Design,
2nd Ed. Yourdon Press, New York, 1979.

6

This work was supported in part by DOE Grants DE-FG02-
93ER25176, DE-FG02-01ER25510, and DE-CFC02-
01ER254489 and NSF award EIA-0080206.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. MSR'05, May 17, 2005, Saint
Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Recovering System Specific Rules from Software Repositories

Chadd C. Williams
Department of Computer Science

University of Maryland
chadd@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science

University of Maryland
hollings@cs.umd.edu

Abstract

One of the most successful applications of static
analysis based bug finding tools is to search the source
code for violations of system-specific rules. These rules
may describe how functions interact in the code, how data
is to be validated or how an API is to be used. To apply
these tools, the developer must encode a rule that must be
followed in the source code. The difficulty is that many of
these system-specific rules are undocumented and "grow"
over time as the source code changes. Most research in
this area relies on expert programmers to document these
little-known rules. In this paper we discuss a method to
automatically recover a subset of these rules, function
usage patterns, by mining the software repository. We
present a preliminary study that applies our work to a
large open source software project.

1 Introduction

Static analysis of source code has been used very
successfully to locate bugs in software. One of the most
successful applications of static analysis to find bugs has
been tools that look for violations of system-specific rules
in the source code. Source code must adhere to a large
number of rules that describe how data should be handled,
how to interact with objects or APIs and how to use
functions safely. Violations of these system-specific rules
are often a source of error [5].

The difficulty with these rules is that they are implicit
and dynamic. As the source code changes new rules are
added and old rules are removed. When functions are
added to an API a new set of rules must be followed that
describe how they are to be used. It is challenging for the

developers of a widely distributed project to keep track of
the rules the code must follow. This task is complicated
by the fact that many of these rules are not documented as
they are created, or are only documented in a CVS
commit message or an email on a developer mailing list.

This leaves the project to rely on developers learning
these rules in a number of unsatisfactory ways. For
example, senior developers relating the rules that they
know to new developers, developers searching CVS
commit messages and mailing lists when they have a
question or code reading. New developers are not the
only ones to suffer. Senior developers need to keep up on
the rules being added and removed from the source code.

In this paper we propose recovering these system-
specific rules by studying the changes made to the source
code. We specifically focus on rules that describe
function usage patterns, how functions should be invoked
in relation to each other. We believe that these usage
patterns can shed light on how an external API should be
used or how internal functions should interact. We have
developed a tool that analyzes each version of a file in the
software repository and determines what new function
usage patterns are introduced in subsequent versions of
each file.

2 Related Work

There has been ample research in the area of detecting
violations of system-specific rules to identify bugs. One
such system, metal [2], allows the user to supply patterns
to match against the source code and flag as warnings.
The patterns the developer supplies are encoded via state
machines that are then applied to the source code. This
system has been used to find a large number of errors
(500) in real software projects. The metal system was
also used to try to infer system specific patterns that
should be checked [3]. While Engler, et al., look only at
the current source code, our work focuses on looking at
the changes made to the source code over time and what
system specific rules these changes highlight.

Work has also been done to validate the notion that
violations of system-specific rules cause a significant
number of the errors seen in software [5]. Matsumura, et
al., describe a case study that shows 32% of failures
detected during the maintenance phase of a software
project were due to violations of implicit code rules. The

7

implicit rules used to check the source code were
generated by ‘expert’ programmers.

The need for information sharing in large, distributed
open source software projects has been studied. Gutwin,
et al., studied the need for group awareness, knowledge
about who is doing what is the project [4]. One of the
aspects of awareness they describe is feedthrough, which
is defined as observations of changes to project artifacts to
indicate who has been doing what.

There has also been work on identifying frequently
applied changes to source code through mining the
software change history [7]. Rysselberghe and Demeyer
state that frequently applied changes can be used to study
how software maintenance proceeds and to suggest
solutions to future problems. They look for both system
specific change patterns and more general patterns. While
our work studies the state of the code after a change is
made, their work looks exclusively at the changes applied
to the code.

Pinzger and Gall identify patterns to recover software
architecture [6]. They use code patterns specified by the
user, and data describing the associatations of these
patterns, to reconstruct higher-level patterns describing
the software architecture.

3 Function Usage Patterns

The system-specific rules that we are studying in this
work are function usage patterns. We want to determine
how functions are invoked with respect to each other,
specifically which functions are often called in close
proximity within the source code. Instances of these
patterns in a software project build up a set of
relationships between functions. We define an instance of
a function usage pattern as a set of two particular function
call sites such that the pattern template is satisfied. We
will explore the relationship aspect in Section 5.3.
Experience suggests that there are sets of functions that
are smaller parts of the implementation of a larger
conceptual goal that need to be invoked together. These
functions may operate on common data, provide error
recovery functionality or perform some type of pair-wise
functionality like lock/unlock. The two specific function
usage patterns we are looking for are the called after and
conditionally called after patterns. The called after
relation is simple, function X is called after function Y in
the source code of some function Z. The conditionally
called after pattern describes the case where function X is
called after function Y, but its invocation is guarded by a
conditional statement. These two function usage patterns

are the only two that we investigated for our preliminary
study. Figure 1a provides an example of the called after
pattern. Figure 1b provides an example of the
conditionally called after pattern. Each of these code
snippets highlight one instance of a function usage pattern
identified by our tool in the Wine source code [10]. The
code snippets have been edited for clarity.

There are a number of other patterns that might be
useful. For example, in Figure 1b the function
GetProcessHeap is called and its return value is used
as an argument to both HeapAlloc and HeapFree.
This type of pattern involving dataflow is something we
plan to study in the future. A similar usage pattern is
evident in Figure 1a between the functions BeginPaint
and DrawIcon.

4 Our Tool

Our tool is very simple and casts a very wide net in
terms of the instances of patterns it finds. This gives us
the freedom to put off making decisions on how to filter
the data until later in the process. This is important as
retrieving the data from the software repository and
generating our results is the most computationally
expensive aspect of this work.

We use the framework developed for our previous
work in mining software repositories to manage the data
from the CVS repository and the results produced by our
tool [9]. In summary, the data from the CVS repository
and the raw results are stored in a database.

The tool we have produced is merely a prototype to
support this preliminary study. It is based on the Edison
Design Group C parser [1]. The tool parses the source
file and scans for function call sites. Within each function
in the source file, two function usage patterns are applied
to each function call site. For every function call site in a
function, every other function call site located later in that
function is involved with it in a called after pattern (unless
the later call site is guarded by an conditional). For each
instance of a pattern, the tool records the names of each
function, the line numbers of the call sites and the name of
the enclosing function. The same process is used to
determine conditionally called after patterns, with a bit
more analysis to identify which functions are guarded by
conditionals.

4.1 Mining the Source Code Repository

When mining the software repository we are looking
for an instance of a function usage pattern in a revision of

Figure 1b: Conditionally Called After Pattern

mdi_cs = HeapAlloc(GetProcessHeap());
if (!mdi_cs)

 HeapFree(GetProcessHeap(), 0, cs);

 HDC hdc = BeginPaint(hwnd, &ps);
if(hdc)

 DrawIcon(hdc, x, y, hIcon);
 EndPaint(hwnd, &ps);

Figure 1a: Called After Pattern

8

a file, where that instance of the pattern did not exist in
the revision immediately prior. We are looking for new
instances of patterns entering the code. Specifically with
this tool we are looking for either a called after or
conditionally called after pattern that did not exist in the
previous revision of the file. Note that we are doing this
on a per file, rather than on a per function, basis.

4.2 Identifying New Instances of Patterns

Once the data is mined from the source code repository
and stored in the database, we must analyze it to
determine when a new instance of a pattern has been
added to the source code. Since our tool casts such a wide
net in identifying patterns we need some way to filter the
data. We have chosen, as a simple heuristic, to only look
at instances of patterns that involve function invocations
that are separated by no more than 10 lines of source
code. This heuristic was chosen with the notion that many
functions in an API need to be invoked in quick
succession and that error handling, a possible target for
the conditionally called after pattern, usually happens in
close proximity to the error producing function.

In the future, we plan on refining this heuristic to be
based on a deeper analysis of control flow. For example,
the entry and exit basic blocks of a function may contain
some function pairs that perform some type of paired
functionality (lock/unlock). The basic blocks before a
control flow split and after a control flow union may
contain function calls related in some interesting way.
Also looking at the type of conditional may be interesting.
The conditional of a while loop versus that of an if
statement may provide an important distinction between
the applications of the conditionally called after pattern.

4.3 Transitive Patterns

Currently the patterns we are searching for are binary.
The specific patterns we are searching for may be
transitive in some cases, allowing larger relationship to be
created. If a call to function foo is often followed by a
call to bar, which is often followed by a call to zoo, then a
call to foo may often be followed by a call to zoo. This
transitivity may or may not exist. The context in which
bar follows foo may be different from the context in
which zoo follows bar. We may find we need to add more
context information to our tool to differentiate usage
patterns for a particular context. Section 5.3 contains a
discussion of how to visualize the patterns mined from the
source code.

5 Wine Case Study

We have used our tool to mine the software repository
for the Wine project to determine what types of patterns
can be recovered [10]. Each revision of each file has been
analyzed by our tool. All instances of patterns that our

tool finds are recorded in a database, tagged with the file
and revision in which the pattern appeared.

Our tool identified over 50 million instances of these
two patterns in the software repository. There were over
2,175 unique instances of patterns that were added to the
source code 10 or more times. Sixty-five unique patterns
were added to the source code 100 times or more. Many
of these 65 patterns dealt with functions that manage the
heap or provide tracing or debugging functionality.

5.1 Called After Pattern

As shown in Figure 1a, this pattern involves two
functions, one called after the other. It is very simple and
our goal with this pattern was to identify chains of
functionality that need to be performed together. Our tool
identified a number of patterns of this type, 1,253 unique
instances of this pattern that were added to the source
code 10 or more times. Some of the patterns identified
were obvious, and while these did not provide novel
insight, they did provide evidence that our analysis was
working as expected. As mentioned, many of the
instances found involved the heap management functions.
In the Wine source code, almost every function that
manipulates their internal heap must first retrieve the heap
for the current process via GetProcessHeap.
Consequently, many heap manipulation functions such as
HeapAlloc and RtlAllocateHeap are called in close
proximity to GetProcessHeap.

Our tool also identified a number of patterns that
represent a notion of paired functionality. These patterns
include pairings such as BeginPaint and
EndPaint, GlobalLock and GlobalUnlock and
EnterCriticalSection/LeaveCriticalSection.
Again, these instances of the pattern are mainly interesting
to validate the results.

A more interesting instance of the pattern involves the
functions DeleteCriticalSection and
HeapFree. In this case, once a critical section object
has been deleted, the memory allocated for that object
needs to be deallocated. This data structure appears to
always be allocated off the internal heap (we also found,
as another instance of the pattern, HeapAlloc followed
by InitializeCriticalSection) and the
memory on the heap needs to be freed to do this. Another
instance of the pattern is LoadCursorA and
RegisterClassA. The latter function takes as a
parameter a data structure representing a class. One field
of that data structure must be initialized with the return
from the function LoadCursorA.

It is instructive to look at the categories of functionality
that are being discovered in instances of these patterns.
Table 1 shows how many new instances of the called after
pattern fall into a selected group of categories. The
number of new instances is broken down by how many
times a particular instance of a pattern was flagged as new
during the software repository mining.

9

New Instances
Category

> 99 99 - 25 24 - 10
Debug 14 95 341
Heap 7 8 11
String Manipulation 0 25 121
GUI 0 3 94
Memory 0 19 17
Paired Functionality 0 6 26

Error Handling 0 3 34
Table 2: Function Pairing Categories for Conditionally

Called After
Table 1 shows that debug statements are heavily used

in the Wine source code. There are 97 instances of
function usage patterns that involve a debug function and
were added to the source code at least 25 times. This
means that there are 97 functions that are called in close
proximity to a particular debug function.

The instances of the pattern listed in the Heap category
are instances in which both functions involved are part of
the heap interface. There are a total of 46 instances found
in the code, indicating that functionality provided by the
heap interface may require a number of function calls.

The category Paired Functionality contains instances of
the pattern where the invoked functions provide
functionality that needs to surround some bit of code.
This includes such function pairings as BeginPaint/
EndPaint and GlobalLock/GlobalUnlock.
Eight such instances were added to the code between 25
and 99 times. Many of these instances involve some type
of synchronization.

5.2 Conditionally Called After Pattern

The conditionally called after pattern is shown in
Figure 1b. Our goal with this pattern was to see whether
or not adding a small amount of control flow context to
the pattern would help to elicit more interesting patterns.
We expected this pattern to be able to identify error
handling code and debugging idioms, instances of code
where the second function is only called if the first
function fails. Many of the instances of this pattern our
tool identified supported this expectation. Our tool found
922 unique instances of this patterns that were added to
the source code 10 or more times.

One of the instances involved the function
RegQueryValueExA being conditionally called after
RegOpenkeyA. In this case, the function
RegOpenKeyA may or may not find a key in the registry.
If it is successful the value can be queried. The insight
here is that the developer cannot assume a key exists and
should do the proper error checking to ensure that it was
found properly.

Another interesting instance of this pattern is
conditionally calling SetLastError after calling
HeapAlloc. This instance of the pattern describes how
errors should be propagated in the code. Table 2 shows
how many new instances of the conditionally called after

pattern fall into a selected group of categories based on
functionality.

5.3 Visualization

While the patterns we are searching for are binary, the
functions involved may be part of many different
instances of the pattern. Because of the type of patterns
we are searching for, two functions that are each involved
separately in an instance of a pattern with a common third
function may themselves be related. This serves to build
up a web of relationships, similar to those studied in the
area of social networks. We have used a social network
viewer, TouchGraph LinkBrowser [8], to explore the
relationships between functions. Figure 2 shows the
neighborhood of the network centered on BeginPaint
and EndPaint.

Looking at this network graph gives quick insight into
the functions that are invoked in close proximity to both
BeginPaint and EndPaint. The function
BeginPaint and EndPaint are used to wrap access to
drawing functionality. We expect functions that provide
this functionality to be found in instances of the called
after pattern with either or both of these functions. The
network in Figure 2 shows this clearly. We can see that
SetTextColor and GetClientRect, for example,
are attached to each of these functions. Further, the thin
end of the edge is attached to the function which is called
after the function at the thick end of the edge. We can see
that GetClientRect is called after BeginPaint, and

Figure 2: Social Network for BeginPaint/EndPaint

New Instances
Category

> 99 99 - 25 24 - 10
Debug 17 80 278
Heap 14 16 16
String Manipulation 3 41 153
GUI 3 22 271
Memory 7 28 19
Paired Functionality 0 8 39

Error Handling 0 9 30
Table 1: Function Pairing Categories for Called After

10

EndPaint is called after GetClientRect.

6 Why Mine the Full Repository?

We have chosen to mine each revision of each file to
obtain a finer level of detail about changes made to the
software. Since we gather data on what instances of
patterns were added at each CVS transaction, we can
investigate how instances of patterns entered the source
code. Instances that are added to the source code steadily
over time (over a large number of CVS transactions) may
indicate a very important, frequently used pattern or a
pattern that causes confusion among developers. On the
other hand, patterns that are added to the source code in a
relatively small number of CVS transactions may indicate
refactoring. Determining the profile of how a pattern is
added to the code may be useful in deciding the
importance of that pattern, how to apply the instance in
the future or how likely the pattern is to be misused by
developers.

7 Future Work

The work we have presented here is still in its early
stages. We have looked at only one software repository,
and have only searched for instances of two patterns. In
the future we will expand the number and complexity of
patterns we search for and apply this technique to more
software projects. We also do not track removed patterns.
Knowing what patterns have been removed from the code
could be useful in keeping an up-to-date list of important
patterns in the project.

Mining the software repository of the Wine project has
produced an enormous amount of data, a total of over 50
million instances of these two patterns were found in the
repository. As we continue to work with this data we will
need to find better ways of filtering out the more
important, or more likely to be important, patterns.
Currently our filter is based on the distance between, in
terms of lines of code, the call sites of the two functions in
the pattern. Clearly there is room for improvement. A
filter that takes into account the files or directories the
called functions (or the calling function) reside in may be
useful in pulling out usage patterns of functions in the
same module. Filters based on control flow graphs and
deeper analysis of conditionals will provide more context
as to the surrounding source code. Dataflow analysis as
well will provide more context and may serve to provide a
stronger link between two function calls. Finally, we need
to not only think about patterns in terms of function calls.
Patterns based on how data is accessed in a function, what
parts of a structure need to be initialized or updated, need
to be investigated as well.

We also need to explore how to use the instances of
these patterns that are mined from the software repository.
Providing these instances of patterns to a knowledge
repository or as an appendix to a developer’s guide may

be a useful way to inform developer’s of the system-
specific rules the source code. Potentially more
interesting is the use of instances of these patterns to
automatically identify problems in the code. This may be
done by feeding the rules into static analysis tools that
identify violations of the rules in the source code.

8 Conclusions

In this paper we have demonstrated how system-
specific rules, in this case function usage patterns, can be
recovered from source code change histories. We have
run a preliminary study to recover such rules from a large,
open source software project. This study has recovered a
number of interesting and non-obvious rules that we think
are critical for developers to understand and follow.

9 References

[1] Edison Design Group, http://www.edg.com/cpp.html

[2] Engler, D., Chelf, B., Chou, A., Hallem, S., Checking
System Rules Using System Specific, Programmer-Written
Compiler Extensions. In Proceedings of the Fourth
Symposium on Operating Systems Design and
Implementation, San Diego, CA, October 2000.

[3] Engler, D., Chen, D. Y., Hallem, S., Chou, A., Chelf, B.,
Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code, In Proceedings of the
ACM symposium on Operating Systems Principles, Banff,
Canada, Oct 2001.

[4] Gutwin, C., Penner, R., Schneider, K., Group Awareness in
Distributed Software Development, In Proceedings of ACM
Conference on Computer Supported Cooperative Work,
Chicago, IL, Nov 2004.

[5] Matsumura, T., Monden, A., Matsumoto, K., The Detection
of Faulty Code Violating Implicit Coding Rules,
Proceedings of the International Workshop on Principles
of Software Evolution (IWPSE ’02), Orlando, FL, USA,
May 2002.

[6] Pinzger, M., Gall, H., Pattern-supported architecture
recovery. In Proceedings of the International Workshop on
Program Comprehension (IWPC’02), Paris, France, June
2002.

[7] Rysselberghe, F., Demeyer, S., Mining Version Control
Systems for FACs (Frequently Applied Changes),
Proceedings of International Workshop on Mining
Software Repositories (MSR ’04), Edinburgh, Scotland,
UK, May 2004.

[8] TouchGraph LinkBrowser, Available online at
http://touchgraph.sourceforge.net

[9] Williams, C. C., Hollingsworth, J. K., Bug Driven Bug
Finders, In Proceedings of International Workshop on
Mining Software Repositories (MSR ’04), Edinburgh,
Scotland, UK, May 2004.

[10] Wine, Available online at http://www.winehq.org

11

Mining Evolution Data of a Product Family ∗

Michael Fischer, Johann Oberleitner and Jacek Ratzinger
Distributed Systems Group

Information Systems Institute
Technical University of Vienna

A-1040 Vienna, Austria
{fischer,oberleitner,ratzinger}@infosys.tuwien.ac.at

Harald Gall
University of Zurich

Department of Informatics
s.e.a.l. – software

evolution & architecture lab
{gall}@ifi.unizh.ch

ABSTRACT
Diversification of software assets through changing requirements
impose a constant challenge on the developers and maintainers of
large software systems. Recent research has addressed the mining
for data in software repositories of single products ranging from
fine- to coarse grained analyses. But so far, little attention has been
payed to mining data about the evolution of product families. In this
work, we study the evolution and commonalities of three variants
of the BSD (Berkeley Software Distribution), a large open source
operating system. The research questions we tackle are concerned
with how to generate high level views of the system discovering and
indicating evolutionary highlights. To process the large amount of
data, we extended our previously developed approach for storing
release history information to support the analysis of product fam-
ilies. In a case study we apply our approach on data from three
different code repositories representing about 8.5GB of data and
10 years of active development.

1. INTRODUCTION
Unanticipated evolution of a single software system enforced

through changing requirements can lead to diversification and will
result in different closely related products. These related products
require a high maintenance effort which could be avoided by build-
ing a platform for a Product Family (PF) from existing software
assets. To identify assets from related products which can be used
as basis for a PF, retrospective software evolution analysis can help
to point out artifacts which exhibit a strong change dependency.

Most of the proposed mining approaches such as Zimmermann
et al. [14] for mining the change history or Collberg et al. [3] for
visualizing a systems evolution are justified to analyze data from a
single source and would therefore require adaption to support data
from multiple product variants. Analyzing a single product vari-

∗The work described in this paper was supported in part by the
Austrian Ministry for Infrastructure, Innovation and Technology
(BMVIT), the Austrian Industrial Research Promotion Fund (FFF),
the European Commission in terms of the EUREKA 2023/ITEA
project FAMILIES (http://www.infosys.tuwien.ac.at/Cafe/) and the
European Software Foundation under grant number 417.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

ant implies a strict order on historical information such as check-
ins into the source code repositories. In contrast to this, multi-
ple product variants can be roughly characterized through arbi-
trary and asynchronous release dates, unanticipated information
flow between variants, different development goals and require-
ments. Given these constraints, with ourPfEvo approach we ad-
dress the problem of handling multiple,asynchronouslymaintained
version control systems to identify change dependencies through
“alien” source code.

Artifacts with a strong change dependency often have architec-
tural dependencies as research by Briand et al. has shown [1, 2].
Another prevalent reason is duplicated code throughcopy’n paste.
For the analysis of such change dependencies it would be beneficial
if existing approaches and techniques can be adapted and reused to
study their impact onto the module structure.

As a result, an expert may draw conclusions about commonali-
ties and dependencies between source code modules based on re-
sults obtained from the change history analysis. Then, the identified
software artifacts can be used as foundation for building a platform
for a product family. A Representative of such a family of related
products is the BSD operating system with its variants and deriva-
tions such asMacOS X, SunOS, or NetBSD.

In this paper we (1) apply and extend our approach [5] for ex-
tracting change history information and generating a release history
database; (2) compare product variants on quantitative level for a
coarse assessment of the historical development and assessment of
the repository information for further research; and (3) apply our
approach for the visualization of change dependencies [4].

The remainder of this paper is organized as follows: Section 2
presents our approach for studying product family evolution. In
Section 3 we present our case study about three BSD variants. Sec-
tion 4 presents related work and Section 5 draws our conclusions
and indicates future work.

2. AN APPROACH TO STUDY PRODUCT
FAMILY EVOLUTION

Our PfEvo approach is an extension of existing techniques for
the study of the evolution of a single software system and comprises
the visualization of different aspects of the evolution of a software
system. Besides some quantitative aspects such as the number of
artifacts, check-in transactions, etc., these systems can be compared
qualitatively as well. These quality aspects can be related to the
type and extent of information flow between different systems, the
impact of other related products on a single product, or hot-spots in
the evolution of a single system with respect to information from
other product variants.

To answer the research question of source code propagation within

12

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

	 	
	 	
	 	

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

! !
! !
! !

" "
" "
" "

#
#
#

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

(((
(((
(((

)))
)))
)))

* *
* *
* *

+ +
+ +
+ +

, ,
, ,
, ,

- -
- -
- -

. .
. .
. .

/ /
/ /
/ /

0 0
0 0
0 0

1 1
1 1
1 1

2 2
2 2
2 2

3 3
3 3
3 3

4 4
4 4
4 4

5 5
5 5
5 5

6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7

8 8 8
8 8 8
8 8 8

9 9 9
9 9 9
9 9 9

: : :
: : :
: : :
: : :

; ; ;
; ; ;
; ; ;

< < <
< < <
< < <
< < <

= =
= =
= =
= =

> > >
> > >
> > >
> > >

? ?
? ?
? ?
? ?

@ @ @
@ @ @
@ @ @

A A
A A
A A

B B B
B B B
B B B

C C C
C C C
C C C

D D D
D D D
D D D

E E E
E E E
E E E

F F F
F F F
F F F
F F F

G G G
G G G
G G G

H H
H H
H H
H H

I I
I I
I I
I I

J J
J J
J J
J J

K K
K K
K K
K K

L L
L L
L L

M M
M M
M M

ROOT

src

gnu
sys

arch

i386

dev

lib

libc

sbin

usr_sbin

share

man

usr_bin

FreeBSD

OpenBSD

NetBSD

Visualization

Consolidated DB

RHDB

RHDB

RHDB

RHDB

Import

Import

Import

Figure 1: Process outline ofPfEvo: results are a consolidated
RHDB and visualizations

a product family we have adopted our earlier approach for build-
ing a release history [5] and visualization of evolutionary informa-
tion of large-scale software [4] and propose the process depicted
in Figure 1. Since all data sources must undergo the same pre-
processing steps—log file extraction, import into Release History
Database (RHDB), detection of change couplings—we use sepa-
rate databases to store the results. For subsequent analysis trans-
actional data from the separate databases are filtered and merged
into a newconsolidateddatabase which is better suited for queries
spanning multiple product variants. Currently we use modified
variants of existing queries to gather data from the three product
databases to compare them on a quantitative level. Another ap-
proach to compare system characteristics is by visually comparing
graphs describing a systems history. We use a module graph indi-
cating the impact of change dependency and their distribution with
respect to different product variants onto the module structure of a
single system.

In previous studies it was possible to use the release dates of
the system under study as input for time scale information. Since
the BSD variants are developed independently, an artificial, com-
mon time scale has to be created. This ensures comparability of
the different system histories. Disadvantageous is that is not pos-
sible to examine and compare the processes between the release
dates, since the release intervals of the different product variants
are crosscut at arbitrary points. Since our requirement is the visu-
alization of the resulting data-sets, we use a sub-sampling interval
of one month.

To detect and relate information flow between BSD variants we
decided to use lexical search in the change logs to find hints for
information flow from other systems into the system under inspec-
tion. Alternatives to a pure lexical search are clone detection in
source code, comparison of the structure of changes, or advanced
indexing and text-analysis techniques.

3. CASE STUDY
For this case study we decided to use derivatives of the Berkley

System Distribution also known as BSD Unix. The selected three
variants—FreeBSD, NetBSD, andOpenBSD—of BSD are large soft-
ware systems consisting of an operating system kernel and a num-
ber of external programs such asls, passwd, the GNU Compiler
Collection (GCC), or the X windows system. These variants have
between 4800 for theOpenBSDvariant and 8000 directories for
the NetBSDvariant. The number of files varies between 30,000
(FreeBSD) and about 68,000 (NetBSD). They are long lived, ac-
tively maintained software systems representing about 8.5GB of
data stored in three different repositories. Furthermore, release in-
formation is available as CVS [7] data for all three variants with

 0

 50

 100

 150

 200

 250

 300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

N
um

be
r

of
 r

ef
er

en
ce

s

407 -2.57*x FreeBSD NetBSD Linux

Figure 2: Number of references to keywordsFreeBSD, NetBSD,
andLinux found inOpenBSDchange logs

direct access to the current repositories. The systems itself possess
different characteristics which can be described as follows: The
FreeBSD1 projects aims to be more user application centric and
thus it can be seen as desktop OS rather than server platform. Its
first release was in December 1993.NetBSD2 is targeted onto porta-
bility and supports more than 10 different CPU types with together
more than 50 different hardware platforms. Among them are exotic
platforms such asAcorn, Amiga, Atari or VAX.Its first release was
in October 1994. As representative of a server platform the aim of
theOpenBSD3 project lies on security and the integration of cryp-
tography. Its first release was in October 1996. WhileNetBSDand
FreeBSDwere directly derived from the4.3BSDbranch,OpenBSD
was derived from theNetBSDbranch in October 1995.

3.1 Quantitative comparison
First we give a quantitative comparison of the number of arti-

facts which are common for the different systems. To determine the
number of common C files in the different RHDBs we use multi-
database SQL queries. Table 1 shows the result for the different
variants. While column “all modules” indicates the total number of
common files found, column “src/sys only” indicates the common
files within this particular subtree. Interesting is the high number
of artifacts which are common inNetBSDandOpenBSD. This can
be explained by the fact thatOpenBSDwas derived fromNetBSD
as mentioned previously.

Table 1: Common files in different BSD variants

Variant Variant all modules src/sys/only
FreeBSD NetBSD 3810 1333
FreeBSD OpenBSD 3839 1079
NetBSD OpenBSD 6969 6847

3.2 Change report text analysis
As substitution for a detailed text and code clone analysis, we

use keywords which were frequently used by the program authors
and recorded in change reports. As useful keywords we identified
freebsd, netbsd, openbsd, and interestinglylinux.

Table 2 lists the number of referenced artifacts between product
variants based on a lexical search for the chosen keywords in the
1http://www.freebsd.org/ [31 December 2004]
2http://www.netbsd.org/ [31 December 2004]
3http://www.openbsd.org/ [31 December 2004]

13

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�

�

�

���
���
���

���
���
���
���

���
���
���

�����
�����
�����

���
���
���

�����
�����
�����
�����

���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

 �
 �
 �

!�!
!�!
!�!

"�"
"�"
"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%
%�%
%�%
%�%

&�&
&�&
&�&

'�'
'�'
'�'
'�'

(�(
(�(
(�(
(�(

)�)
)�)
)�)

�
�
�

+�+
+�+
+�+

,�,
,�,
,�,

-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.

/�/�/
/�/�/
/�/�/

0�0�0
0�0�0
0�0�0

1�1�1
1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6

7�7�7
7�7�7
7�7�7

8�8�8
8�8�8
8�8�8

9�9�9
9�9�9
9�9�9

:�:�:
:�:�:
:�:�:

;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<

=�=�=
=�=�=
=�=�=

>�>�>
>�>�>
>�>�>

?�?
?�?
?�?

@�@
@�@
@�@

A�A
A�A
A�A

B�B
B�B
B�B

C�C
C�C
C�C

D�D
D�D
D�D

E�E
E�E
E�E

F�F
F�F
F�F

G�G
G�G
G�G

H�H
H�H
H�H

I�I
I�I
I�I

J�J
J�J
J�J

K�K
K�K
K�K
K�K

L�L
L�L
L�L

M�M�M
M�M�M
M�M�M

N�N�N
N�N�N
N�N�N

O�O�O
O�O�O
O�O�O
O�O�O

P�P�P
P�P�P
P�P�P
P�P�P

Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q

R�R�R
R�R�R
R�R�R

S�S
S�S
S�S

T�T
T�T
T�T

U�U
U�U
U�U

V�V
V�V
V�V

W�W
W�W
W�W

X�X
X�X
X�X

Y�Y
Y�Y
Y�Y

Z�Z
Z�Z
Z�Z

[�[
[�[
[�[

\�\
\�\
\�\

]�]
]�]
]�]

^�^
^�^
^�^

�
�
�
�

`�`
`�`
`�`
`�`

a�a
a�a
a�a
a�a

b�b
b�b
b�b
b�b

c�c
c�c
c�c
c�c

d�d
d�d
d�d

e�e
e�e
e�e

f�f
f�f
f�f

g�g
g�g
g�g

h�h
h�h
h�h

i�i
i�i
i�i
i�i

j�j
j�j
j�j
j�j

k�k
k�k
k�k
k�k

l�l
l�l
l�l
l�l

m�m
m�m
m�m

n�n
n�n
n�n

o�o�o
o�o�o
o�o�o
o�o�o

p�p
p�p
p�p
p�p

q�q�q
q�q�q
q�q�q
q�q�q

r�r
r�r
r�r
r�r

s�s�s
s�s�s
s�s�s

t�t
t�t
t�t

u�u
u�u
u�u

v�v
v�v
v�v

w�w
w�w
w�w

x�x
x�x
x�x

y�y
y�y
y�y
y�y

z�z
z�z
z�z

{�{
{�{
{�{

|�|
|�|
|�|

}�}
}�}
}�}

~�~
~�~
~�~

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

 � �
 � �
 � �

¡�¡�¡
¡�¡�¡
¡�¡�¡

¢�¢
¢�¢
¢�¢

£�£�£
£�£�£
£�£�£

¤�¤
¤�¤
¤�¤

¥�¥�¥
¥�¥�¥
¥�¥�¥
¥�¥�¥

¦�¦
¦�¦
¦�¦

§�§
§�§
§�§

¨�¨
¨�¨
¨�¨

©�©
©�©
©�©

ª�ª
ª�ª
ª�ª«�«

«�«
«�«

¬�¬
¬�¬
¬�¬

­�­
­�­
­�­
­�­

®�®
®�®
®�®

¯�¯
¯�¯
¯�¯

°�°
°�°
°�°

±�±
±�±
±�±
±�±

²�²
²�²
²�²
²�²

³�³
³�³
³�³
³�³

´�´
´�´
´�´

µ�µ
µ�µ
µ�µ
µ�µ

¶�¶
¶�¶
¶�¶
¶�¶

·�·
·�·
·�·

¸�¸
¸�¸
¸�¸

¹�¹
¹�¹
¹�¹

º�º
º�º
º�º

»�»
»�»
»�»
»�»

¼�¼
¼�¼
¼�¼
¼�¼

½�½
½�½
½�½

¾�¾
¾�¾
¾�¾

¿�¿
¿�¿
¿�¿

À�À
À�À
À�À

Á�Á
Á�Á
Á�Á

Â�Â
Â�Â
Â�Â

Ã�Ã�Ã
Ã�Ã�Ã
Ã�Ã�Ã

Ä�Ä
Ä�Ä
Ä�Ä

Å�Å�Å
Å�Å�Å
Å�Å�Å

Æ�Æ
Æ�Æ
Æ�Æ

Ç�Ç
Ç�Ç
Ç�Ç

È�È
È�È
È�È

É�É
É�É
É�É

Ê�Ê
Ê�Ê
Ê�Ê

Ë�Ë
Ë�Ë
Ë�Ë

Ì�Ì
Ì�Ì
Ì�Ì

Í�Í
Í�Í
Í�Í

Î�Î
Î�Î
Î�Î

Ï�Ï
Ï�Ï
Ï�Ï
Ï�Ï

Ð�Ð
Ð�Ð
Ð�Ð

Ñ�Ñ�Ñ
Ñ�Ñ�Ñ
Ñ�Ñ�Ñ

Ò�Ò�Ò
Ò�Ò�Ò
Ò�Ò�Ò

Ó�Ó�Ó
Ó�Ó�Ó
Ó�Ó�Ó

Ô�Ô�Ô
Ô�Ô�Ô
Ô�Ô�Ô

Õ�Õ�Õ
Õ�Õ�Õ
Õ�Õ�Õ
Õ�Õ�Õ

Ö�Ö�Ö
Ö�Ö�Ö
Ö�Ö�Ö

×�×
×�×
×�×
×�×

Ø�Ø
Ø�Ø
Ø�Ø
Ø�Ø

Ù�Ù
Ù�Ù
Ù�Ù

Ú�Ú
Ú�Ú
Ú�Ú

Û�Û
Û�Û
Û�Û

Ü�Ü
Ü�Ü
Ü�Ü

Ý�Ý
Ý�Ý
Ý�Ý

Þ�Þ
Þ�Þ
Þ�Þ

ß�ß
ß�ß
ß�ß

à�à
à�à
à�à

á�á
á�á
á�á

â�â
â�â
â�â

ã�ã
ã�ã
ã�ã

ä�ä
ä�ä
ä�ä

å�å
å�å
å�å
å�å

æ�æ
æ�æ
æ�æ

ç�ç�ç
ç�ç�ç
ç�ç�ç
ç�ç�ç

è�è
è�è
è�è
è�è

é�é�é
é�é�é
é�é�é

ê�ê
ê�ê
ê�ê

ë�ë�ë
ë�ë�ë
ë�ë�ë

ì�ì
ì�ì
ì�ì

í�í
í�í
í�í
í�í

î�î
î�î
î�î
î�î

ï�ï
ï�ï
ï�ï
ï�ï

ð�ð
ð�ð
ð�ð
ð�ð

ñ�ñ
ñ�ñ
ñ�ñ

ò�ò
ò�ò
ò�ò

ó�ó�ó
ó�ó�ó
ó�ó�ó
ó�ó�ó

ô�ô�ô
ô�ô�ô
ô�ô�ô
ô�ô�ô

õ�õ�õ
õ�õ�õ
õ�õ�õ

ö�ö�ö
ö�ö�ö
ö�ö�ö

÷�÷�÷
÷�÷�÷
÷�÷�÷

ø�ø�ø
ø�ø�ø
ø�ø�ø

ù�ù
ù�ù
ù�ù

ú�ú
ú�ú
ú�ú

û�û
û�û
û�û

ü�ü
ü�ü
ü�ü

ý�ý
ý�ý
ý�ý

þ�þ
þ�þ
þ�þ

ÿ�ÿ�ÿ
ÿ�ÿ�ÿ
ÿ�ÿ�ÿ

���
���
���

�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�
�

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

 �
 �
 �

!�!
!�!
!�!

"�"
"�"
"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%
%�%
%�%

&�&
&�&
&�&

'�'
'�'
'�'

(�(�(
(�(�(
(�(�(

)�)
)�)
)�)

��*
��*
��*
��*

+�+
+�+
+�+
+�+

,�,�,
,�,�,
,�,�,

-�-
-�-
-�-

.�.
.�.
.�.
.�.

/�/
/�/
/�/
/�/

0�0
0�0
0�0
0�0

1�1
1�1
1�1
1�1

2�2
2�2
2�2

3�3
3�3
3�3

4�4
4�4
4�4

5�5
5�5
5�5

6�6
6�6
6�6

7�7
7�7
7�7

8�8
8�8
8�8

9�9
9�9
9�9

:�:
:�:
:�:

;�;
;�;
;�;

<�<
<�<
<�<
<�<

=�=
=�=
=�=
=�=

>�>
>�>
>�>
>�>

?�?
?�?
?�?

@�@
@�@
@�@

A�A
A�A
A�A

B�B
B�B
B�B

C�C
C�C
C�C

D�D
D�D
D�D

E�E
E�E
E�E

ROOT src

gnu

usr_bin
binutils

include

etc

sys

arch

mvme88k

i386

isa

pcvt

include

pc532

wgrisc

alpha
arc

amiga

amiga

atari

mac68k

macppc

vax

mvmeppc

kbus

m68k

hp300

sparc64
arm32

powerpc

sparc

hppa

sun3pmax

mvme68k

dev

pci

lib

libkern

arch

compat

miscfsufs

netinet

isofs

libexec

bin

games

lib
libc

arch

libpthread
libc_r

sbin

distrib

sets

lists

notes

sparc

usr_sbin

share

man

man4

usr_bin

Figure 3: Change coupling between modules of the source code
structure of the OpenBSD system with emphasize on the module
structure

Table 2: Information flow between variants of the BSD systems
based on lexical search

Variant Keyword all revisions revision> 1.1
FreeBSD netbsd 5131 3577

openbsd 2729 1353
linux 1791 1387

NetBSD freebsd 2852 2186
openbsd 2679 2224
linux 1547 1125

OpenBSD freebsd 2406 1933
netbsd 16802 7423
linux 775 463

change logs. Column one lists the name of the product variant used
to retrieve the change logs and column two the respective keyword.
Column three entitled “all revisions” lists the number of distinct
artifacts found in the RHDB having change logs with the specified
keyword. Column four titled “revision > 1.1” lists the number
of distinct artifacts found in the RHDB having change logs with
the specified keyword and not having a revision number of “1.1”
(which denotes the initial revision). The significant difference be-
tween the values in column three and four can be interpreted in
such a way, that a larger number of files were imported from other
systems and further maintenance is decoupled from the originating
version.

3.3 Reference distribution
During the lexical search for the given keywords we recorded

in total 12,540 change logs forFreeBSD, 9,468 forNetBSD, and
20,906 forOpenBSD. Based on these results, Figure 2 depicts the
distribution of references with respect to the observation period.
Visually the histogram forOpenBSDsuggest a strong decreasing
trend in the information flow from other platforms into theOpenBSD
source code repository.

To underpin the visual perception of the trends we use linear
regression analysis to find the dependency between the number of

�����
�����
�����

���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

	�	�	
	�	�	
	�	�	

�

�

�

�����
�����
�����

���
���
���

�

�

�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

���
���
���
���

 �
 �
 �
 �

!�!
!�!
!�!

"�"
"�"
"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%�%
%�%�%
%�%�%

&�&�&
&�&�&
&�&�&

'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(

)�)�)
)�)�)
)�)�)

��*
��*
��*

+�+
+�+
+�+

,�,
,�,
,�,

-�-
-�-
-�-

.�.
.�.
.�.

/�/
/�/
/�/
/�/

0�0
0�0
0�0

1�1
1�1
1�1

2�2
2�2
2�2

3�3
3�3
3�3

4�4
4�4
4�4

5�5
5�5
5�5

6�6
6�6
6�6

7�7�7
7�7�7
7�7�7
7�7�7

8�8
8�8
8�8
8�8

9�9�9
9�9�9
9�9�9

:�:
:�:
:�:

;�;�;
;�;�;
;�;�;

<�<
<�<
<�<

=�=
=�=
=�=

>�>
>�>
>�>

?�?
?�?
?�?

@�@
@�@
@�@

A�A
A�A
A�A

B�B
B�B
B�B

C�C�C
C�C�C
C�C�C

D�D�D
D�D�D
D�D�D

E�E�E
E�E�E
E�E�E

F�F�F
F�F�F
F�F�F

G�G�G
G�G�G
G�G�G
G�G�G

H�H�H
H�H�H
H�H�H

I�I
I�I
I�I

J�J
J�J
J�J

K�K
K�K
K�K

L�L
L�L
L�L

M�M
M�M
M�M
M�M

N�N
N�N
N�N

ROOT

src

gnu
sys

arch

i386

dev

lib

libc

sbin

usr_sbin

share

man

usr_bin

Figure 4: Change coupling between modules of the source code
structure of the OpenBSD system

references and time-scale intervals.

Table 3: Linear regression for referenced keywords asy = d + kx
for the whole observation period, for the years 1995–2001 (y =
d1,2 + k1,2x) and the years 2001–2004 (y = d3,3 + k3,3x)

Variant d k d1,2 k1,2 d3,3 k3,3

FreeBSD 22.7 0.897 -2.67 1.46 387 -2.35
NetBSD -22.7 1.28 -15.7 1.14 -21.3 1.31
OpenBSD 407 -2.57 543 -4.90 668 -4.48

To test the development of the references over the given obser-
vation period we computed the values for the whole period and two
sub-intervals: the first interval accounts for about 2/3 (variables
k1,2 andd1,2) of the observation period which corresponds to the
years 1995–2001; the second interval accounts for about the last 1/3
(variablesk3,3 andd3,3) of the observation period which represents
the last 36 months of the development history (years 2001–2004).

Table 3 shows the results for the three variants indicating a strong
increasing trend forFreeBSDandNetBSD(k > 0 for both variants
over the whole observation period). ForFreeBSDthis trend re-
verses for the last 36 months (k3,3 < 0). The low number of total
change logs found forNetBSDand the positive trend in the change
dependency ofNetBSDsuggest that large amounts of source code
are still derived from the other OS variants. This perception is also
supported by Table 2 sinceNetBSDhas the highest ratio between
the two counted categories “revisions> 1.1” and “all revisions”. In
contrast,OpenBSDexhibits a decreasing trend in both sub-intervals
and the whole observation period starting from a high level (straight
line in Figure 2).

In the next sections we provide a more detailed look onto the
change relationships with respect to different products.

3.4 Change impact analysis
To show the impact of changes onto the module structure with

respect to foreign source code we selectedOpenBSDfor a closer
inspection since we counted here the most keywords referencing
other OS (see Table 2). The relevant artifacts were identified through
lexical search as previously described. Based on the search results
and the change log data the impact of change dependencies on the
module structure is evaluated. The result of this step is depicted
in the Figures 3 and 4. It shows the module structure together
with change dependencies derived from the change log data. While
filled circles indicate the nodes of the directory tree, shaded boxes
indicate different product variants. We use������

���

���
���
���

as glyph forFreeBSD,

14

���
���
���

���
���
���

for NetBSD, and ������
���

���
���
���

is used forLinux. The approach for gener-
ating the layout for change dependencies information is based on
Multi Dimensional Scaling (MDS) [9] and has been used by our
group to visualize to impact of problem report data onto the mod-
ule structure of large software [4].

To avoid cluttering of the figure with the several hundred mod-
ules of the source code package, we shifted relevant information
from lower level nodes of the nested graph structure towards the
root node until a predefined threshold criterion—at least 64 refer-
ences through change couplings per node—is met. The node sizes
indicate the number of references found for each node and its sub-
trees.

While dashed lines indicate the directory structure of the source
package, solid gray and black lines (pink and red on color displays)
indicate the logical coupling between different parts of the system.

Figure 3 shows the dependencies between modules with em-
phasize on the module structure (149 nodes). The distribution of
the glyphs forFreeBSD, NetBSD, and Linux indicates a signifi-
cant impact—though decreasing trend—of the other OS variants
onto the development ofOpenBSD. Only very few modules such as
libpthread—POSIX threads are not part of theLinuxkernel sources—
or lists (on the bottom left in Figure 3) are not infected by “Linux
virus”. This wide distribution ofLinux related change dependen-
cies is a surprising result since we did not expect such a distribu-
tion after the quantitative analysis. Interesting as well is that change
dependencies occur mainly within thesrc/syssub-structure which
represents the kernel related source code parts.

After filtering of less relevant modules and shifting the informa-
tion to higher level modules in the hierarchy we obtain the graph
depicted in Figure 4 (14 nodes). Here, the graph layout respects
the strength of coupling relationships—the stronger the coupling,
the closer the nodes—between the different modules. This more
comprehensible and less cluttered picture of couplings highlights
the dependencies of the documentation insrc/share/man, the sys-
tem administration programs insrc/sbin, user application programs
such asls in src/usr bin andsrc/usr sbin from the OS kernel re-
lated files underneathsrc/sys. Interesting to see is also the strong
coupling via “foreign” source code changes betweensrc/sys/arch/
i386 andsrc/sys/devsince this coupling spans across the module
hierarchy.

Since the size of the nodes indicates the number of relevant change
entries found, we can conclude that the strongest impact of change
coupling was onsrc/sys, src/sys/dev, src/sys/arch, and src/sys/
arch/ i386. Table 4 lists an excerpt of the topmost referenced ar-
tifacts which suggests a high information exchange with other soft-
ware systems.

Table 4: Topmost referenced files with one of the given keywords
in the change logs ofOpenBSD

Keyword Count Path
freebsd 59 src/sys/dev/pci/files.pci
. 52 src/sys/dev/pci/pciide.c
. 52 src/sys/dev/pci/pcidevs
netbsd 45 src/sys/arch/i386/i386/machdep.c
. 43 src/sys/dev/pci/pciide.c
. 39 src/sys/conf/files
linux 14 src/sys/compat/linux/linuxsocket.c
. 14 src/sys/compat/linux/syscalls.master
. 5 src/sys/dev/ic/ifwireg.h

An example for the propagation of commonly required feature
is the introduction of the PCI bus. Since this device type was not
widely available at the time of theOpenBSDfork in 1996, support
had to be added later requiring several separate changes as Table 4

suggests. Another interesting aspect is the relationship withLinux.
The listing of if wireg.h suggests that specific information about
WLAN adapters are obtained fromLinuxas well.

3.5 Detailed change analysis
Since the three BSD variants originate from the same UNIX

branch, it is to expect that also a number of source code changes
exhibit the same or at least similar structure. For a manual ver-
ification we randomly selected one file which is available in all
three variants. For this file—ufs quota.cfrom thesrc/sys/ufs/ufs/
directory—we manually inspected the revision history for signifi-
cant changes.

One significant change was the modification of a function call
in theFreeBSDversion ofufs quota.con 1994-10-06 (revision 1.2
→ 1.3) resulting in eight modified source lines. Thediff-snippet—
depicted below—for the affected source code revision shows a sin-
gle change of a source line. The first line indicates the removed
code, whereas the third one shows the replacement code. The three
dashes in-between indicate a delimiter line.

< sleep ((caddrt)dq , PINOD+2);
−−−
> (void) tsleep ((caddrt)dq , PINOD+2, ”dqsync”, 0);

In the change log we found the following comment, which indicates
the reason for the source code modification: “Use tsleep() rather
than sleep so that ’ps’ is more informative about the wait.”

The same modification in theNetBSDversion has been applied
on 2000-05-27 which is six years later than the original modifi-
cation (revision 1.16→ 1.17) and inOpenBSDmore than eight
years later on 2001-11-21 (revision 1.7→ 1.8)—though without
the (caddr t) type cast listed in the preceding code snippet. The
diff-snippet below depicts the modification.

< sleep ((caddrt)dq , PINOD+2);
−−−
> (void) tsleep (dq , PINOD+2, ”dqsync”, 0);

In theNetBSDvariant of the change log the comment is less in-
formative: “sleep() -> tsleep()”. While in NetBSDthis change still
produces similar results when building the revision deltas viadiff,
in OpenBSDthe change was part of a larger source code modifi-
cation consisting of 380 added and 161 deleted source lines (CVS
does not identify modified lines, instead every modified line ac-
counts for one added and one deleted line). Analogues to the given
example, many changes can be found with varying degree of simi-
larity making it difficult to track source code propagation.

3.6 Discussion
During experiments with our RHDB we noticed some shortcom-

ings which have to be resolved prior to a thorough analysis of
the different product variants. First, through moving and renam-
ing files in the CVS repository by the developers of the software
systems, the historical information is segmented. Thus related seg-
ments have to be identified and concatenated to describe a contin-
uous historical time-line of an artifacts history. Second, as result
of the import process artifacts which have identical file names are
assigned different IDs in the RHDB. This may negatively effect
multi-database queries for comparison of artifacts since artifacts
with common origins have to be identified for every evaluation of
a database query. This mapping of IDs will be ideally stored in the
consolidated part of the RHDB as indicated in Figure 1.

From the software evolution analysis point of view, BSD repre-
sents an interesting software system which opens a wide field for
further analysis. Since detailed information about the source code

15

is available it would be beneficial to apply a tool for code clone
detection such as [8] proposed by Kamiya et al. To improve the
results of the lexical search we currently explore the application of
techniques related to Latent Semantic Indexing (LSI) [10].

4. RELATED WORK
Within the EU projects ARES, ESAPS, CAFE, and Families

much work has been done in areas such as the identification of
assets for product family architectures, evolution and testing of ex-
isting product families, or architectural models for product families
(Van der Linden [12]). More related with our work with respect to
product family evolution is the approach presented by Riva and Del
Rosso in [11]. They investigated the evolution of a family platform
and describe approaches which enable assessment and reconstruc-
tion of architectures. In contrast to their work, we investigate the
evolution of different variants to identify candidates for building a
family platform.

In [6] Gall, Hajek and Jazayeri examined the structure of a large
Telecommunications Switching Software(TSS) over more than 20
releases to identify logical coupling between system and subsys-
tems. This coupling is used in further processing steps to reveal
evolutionary aspects such as hot-spots. For the detection and vi-
sualization of evolutionary hot-spots we have developed a method-
ology which relates software feature and release history informa-
tion [4]. In this paper we used information from the release history
with respect to different keywords instead of feature data. This
information was reflected onto the module structure of the source
code and visualized to generate the high level views of a software
system. Independent from our research work Yamamoto et al. in-
vestigated variants of the BSD system for similarities as well [13].
They mainly useCCFinderby Kamiya et al. [8] to compute simi-
larity metrics of the source code. In contrast to our work, their aim
lies on the overall similarities between different products, rather
than the type, amount and distribution of information flow between
the variants.

5. CONCLUSIONS
Retrospective analysis of variants of related products opens in-

teresting perspectives on the evolution of large software systems.
With minimal changes and additions to existing tools it is already
possible to recover the information flow between the different vari-
ants and evolutionary hot-spots with respect to the module struc-
ture. Through the application of a lexical search in the change logs
we were able to reveal the increasing information flow of two vari-
ants of the systems. For the third system we found a decreasing
flow starting from a very high level. For one selected system we
applied an adapted method which generates high-level views of the
module structure of a system with respect to their coupling and in-
formation flow from other product variants. To support these find-
ings about the information flow we performed detailed change anal-
ysis of a randomly selected file. Interesting results are: the wide
distribution of Linux related change dependencies in the source
code; the strong change coupling within the subtree ofsrc/sys; and
the propagation of source code taking several years.

For future work we plan the application of a code clone detection
process to identify related modifications. An analysis can reveal the
degree and frequency of how tight product variants are coupled.
Another interesting area for future work is the detailed analysis
of change log information for commonalities. Since change logs
can provide additional hints about a particular modification, they
provide relevant information which enables the identification of a
modifications origin.

6. REFERENCES
[1] BRIAND , L., DEVANBU , P.,AND MELO, W. An

investigation into coupling measures for C++. In
Proceedings of the 19th international conference on
Software engineering(1997), ACM Press, pp. 412–421.

[2] BRIAND , L. C., DALY , J. W.,AND WÜST, J. K.A Unified
Framework for Coupling Measurement in Object-Oriented
Systems.IEEE Transactions on Software Engineering 25, 1
(1999), 91–121.

[3] COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J.,
AND WAMPLER, K. A system for graph-based visualization
of the evolution of software. InProceedings of the 2003
ACM symposium on Software visualization(2003), ACM
Press, pp. 77–ff.

[4] FISCHER, M., AND GALL , H. Visualizing Feature Evolution
of Large-Scale Software based on Problem and Modification
Report Data.Journal of Software Maintenance and
Evolution 16, 6 (November/December 2004), 385–403.

[5] FISCHER, M., PINZGER, M., AND GALL , H. Populating a
Release History Database from Version Control and Bug
Tracking Systems. InProceedings International Conference
on Software Maintenance (ICSM’03)(September 2003),
pp. 23–32.

[6] GALL , H., HAJEK, K., AND JAZAYERI , M. Detection of
Logical Coupling Based on Product Release History. In
Proceedings International Conference on Software
Maintenance(March 1998), IEEE Computer Society Press,
pp. 190–198.

[7] GRUNE, D., BERLINER, B., POLK , J., KLINGMON , J.,
AND CEDERQVIST, P.Version Management with CVS, 1992.
http://www.cvshome.org/docs/manual/ [5 April 2004].

[8] KAMIYA , T., KUSUMOTO, S.,AND INOUE, K. Ccfinder: A
multilinguistic token-based code clone detection system for
large scale source code.IEEE Transactions on Software
Engineering 28, 7 (2002), 654–670.

[9] KRUSKAL, J. B.,AND WISH, M. Multidimensional Scaling.
Quantitative Applications in the Social Sciences 11(1978).

[10] LETSCHE, T. A., AND BERRY, M. W. Large-scale
information retrieval with latent semantic indexing.
Information Sciences 100(August 1997), 105–137.

[11] RIVA , C., AND DEL ROSSO, C. Experiences with software
product family evolution. InProceedings Sixth International
Workshop on Principles of Software Evolution (IWPSE’03)
(September 2003), IEEE Computer Society Press,
pp. 161–169.

[12] VAN DER L INDEN, F., Ed.Software Product-Family
Engineering: 5th International Workshop, PFE 2003, Siena,
Italy, vol. 3014 ofLecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2004.

[13] YAMAMOTO , T., MATSUSHITA, M., KAMIYA , T., AND

INOUE, K. Measuring Similarity of Large Software Systems
Based on Source Code Correspondence. InProceedings of
the 6th International Conference on Product Focused
Software Process Improvement (PROFES’05)(June 2005). to
appear.

[14] ZIMMERMANN , T., WEISSGERBER, P., DIEHL , S.,AND

ZELLER, A. Mining Version Histories to Guide Software
Changes. InProceedings 26th International Conference on
Software Engineering (ICSE)(May 2004), ACM Press,
pp. 563–572.

16

Using a Clone Genealogy Extractor for Understanding and
Supporting Evolution of Code Clones

Miryung Kim and David Notkin
Computer Science & Engineering

University of Washington
Seattle, USA.

{miryung,notkin}@cs.washington.edu

ABSTRACT
Programmers often create similar code snippets or reuse ex-
isting code snippets by copying and pasting. Code clones
—syntactically and semantically similar code snippets—can
cause problems during software maintenance because pro-
grammers may need to locate code clones and change them
consistently. In this work, we investigate (1) how code clones
evolve, (2) how many code clones impose maintenance chal-
lenges, and (3) what kind of tool or engineering process
would be useful for maintaining code clones.

Based on a formal definition of clone evolution, we built a
clone genealogy tool that automatically extracts the history
of code clones from a source code repository (CVS). Our
clone genealogy tool enables several analyses that reveal evo-
lutionary characteristics of code clones. Our initial results
suggest that aggressive refactoring may not be the best so-
lution for all code clones; thus, we propose alternative tool
solutions that assist in maintaining code clones using clone
genealogy information.

1. INTRODUCTION
We define code clones as syntactically similar code snippets
that resemble one another semantically, which are often cre-
ated by copy and paste1. Code clones may induce problems
during software evolution. In particular, when a change is
made to one element in a group of clones, a programmer
must generally make consistent changes to the other ele-
ments in the group. Forgetting to update one or more ele-
ments may leave outdated code, a potential bug. In other
words, code clones impose cognitive overhead because pro-
grammers must remember cloning dependencies to apply the
same change consistently.

1Code clones have no consistent definition in the literature,
but most consider them to be identical or near identical
fragments of source code [5, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Software engineering researchers have addressed problems
surrounding code clones in many ways. First, several kinds
of clone detectors have been built. Clone detectors [3, 4, 6,
7, 10, 11, 13, 14, 15, 17] identify similar code snippets auto-
matically by comparing the internal representation of source
code (e.g., a parametrized token string [3, 11], AST [6, 17],
or PDG [13, 14]). Second, a few programming methodolo-
gists have educated programmers about how to avoid or re-
move code clones. Fowler [8] argues that code duplicates are
bad smells of poor design and programmers should aggres-
sively use refactoring techniques. The Extreme Program-
ming (XP) community has integrated frequent refactoring
as a part of development process. Nickell and Smith [17]
argue that fewer code clones are found in XP process soft-
ware, claiming that the XP process improves software qual-
ity. We believe that these previous research efforts are based
on the following assumptions: (1) code clones indicate poor
software quality, (2) aggressive refactoring would solve the
problem of code clones, and (3) if programmers can locate
code clones, they can improve the quality of the code base.

Based on our study of copy and paste programming prac-
tices [12], we became skeptical about the validity of some of
these assumptions. We found that even skilled programmers
sometimes had no choice but to create and manage code
clones. Subjects copied and pasted code snippets to reuse
the logic that is often not separable given the limitations of
Java programming language. Our subjects often discovered
an appropriate level of abstraction as they copied, pasted,
and modified code; some subjects postponed refactoring un-
til their design decisions become stable.

We hypothesize that programmers create and maintain code
clones for two major reasons: (1) as programmers deal with
volatile design decisions while they add new features or ex-
tend existing features, they prefer not to commit to a partic-
ular level of abstraction too quickly, and (2) programmers
cannot refactor many code clones because of the primary
design decisions in the software and the limitations of pro-
gramming languages. To test our hypothesis, analyzed how
code clones have evolved in two Java open source projects.
We formally defined a model of clone evolution and then
built an analysis tool that automatically extracts the his-
tory of code clones from a set of program versions. Using
this tool, we investigated frequent clone evolution patterns.

Our initial result confirms some conventional wisdom about

17

code clones and also suggests that aggressive refactoring may
not benefit many, perhaps not most, clones:

• Clones are not dormant and programmers often face
the challenge of updating clones consistently. In fact,
32% ∼ 38% of code clones changed consistently with
their counterparts at least once in their history.

• Aggressive refactoring may not be the best solution;
64% ∼ 68% of code clones were not factorable un-
less programmers sacrifice primary design decisions or
make non-local changes.

Because programmers may not be able to remove or avoid all
code clones, we propose clone maintenance tools as effective
alternatives and supplements to refactoring. The proposed
software engineering tools employ clone genealogy informa-
tion—the history of code clones—to assist in maintaining
clones.

The rest of this paper is organized as follows. Section 2
formally defines the model of clone evolution, which serves
the basis of a clone genealogy extractor described in Section
3. Section 4 presents analysis of clone evolution patterns
and discusses implications of our initial result. Section 5
proposes software engineering tools that use clone genealogy
information. Section 6 summarizes and concludes our study.

2. MODEL OF CLONE EVOLUTION
We formally defined the model of clone evolution to reason
how clones change regardless of underlying clone detection
technologies.

The basic unit of our analysis is a Code Snippet which has
two attributes, Text and Location. Text is an internal rep-
resentation of code that a clone detector uses to compare
code snippets. For example, when using CCFinder [11], a
parametrized token sequence is Text, whereas when using
CloneDr [6], Text is an isomorphic AST. A Location is used
to track code snippets across multiple versions of a program;
thus, every code snippet in a particular version of a program
has a unique Location. A Clone Group is a set of code snip-
pets with identical Text.
A Cloning Relationship exists between an old clone group
and a new clone group in two consecutive versions if and
only if the similarity between the clone groups is over a sim-
ilarity threshold simth. An Evolution Pattern is defined
between an old clone group OG in the version k and a new
clone group NG in the version k + 1, where NG and OG

have a Cloning Relationship.

• Same: all code snippets in NG did not change from
OG.

• Add: at least one code snippet in NG is a newly added
one. For example, programmers added a new code
snippet to NG by copying an old code snippet in OG.

• Subtract: at least one code snippet in OG does not
appear in NG. For example, programmers removed
one clone snippet.

A

B

A

B

D

C

A

B

D

C

C

V
i
 V
i+1
 V
i+2
 V
i+3

A

B

D

Clone group

Code snippet

Location overlapping

relationship

Cloning relationship

Consistent Change
Add
 Inconsistent Change

Subtract

Evolution Patterns

A

D

V
i+4

Subtract

Figure 1: Example Clone Lineage

• Consistent Change: all code snippets in OG have
changed consistently; thus they belong to NG together.
For example, programmers applied the same change
consistently to all code clones in OG.

• Inconsistent Change: at least one code snippet in
OG changed inconsistently; thus it does not belong to
NG anymore. For example, a programmer forgot to
change one code snippet in OG.

Clone Lineage is a directed acyclic graph that describes the
evolution history of a sink node (clone group). In a clone
lineage, a clone group (node) in the version k is connected
by an Evolution Pattern (directed edge) from a clone group
in the version k − 1. For example, Figure 1 shows a clone
lineage including Add, Subtract, Consistent Change, and
Inconsistent Change.

Clone Genealogy is a set of clone lineages that have orig-
inated from the same clone group. A clone genealogy is a
connected component where every clone group (node) is con-
nected by at least one evolution pattern (edge). A clone ge-
nealogy approximates how programmers create, propagate,
and evolve code clones by copying, pasting, and modifying
code. Our model is written in the Alloy modeling language
[2] and is available at [1].

3. CLONE GENEALOGY EXTRACTOR
Based on the clone evolution model in Section 2, we built
a tool that automatically extracts clone genealogies over a
project’s lifetime.

Given the source code repository (CVS) of a project, our tool
prepares versions of the project in chronological order. We
used Kenyon’s front-end to identify CVS transactions and
check out the source code that corresponds to each transac-
tion time [9].

Given multiple versions of a program, our tool identifies
clone groups in each version using a clone detector. Our
tool is designed to plug in different types of a clone de-
tector. Currently we use CCFinder [11], a state-of-the-art
clone detector, which compares a parametrized token string
of code to detect code clones. Next, it finds cloning relation-
ships between all consecutive versions using the same clone
detector. Then, it separates each connected component of

18

Table 1: Clone Genealogies in carol and dnsjava

Number of Genealogies carol dnsjava

Total 122 95
False Positive 13 19

Locally Unfactorable 70 (64%) 52 (68%)
Consistent Changed 41 (38%) 24 (32%)

cloning relationships found over the project’s life time and
labels evolution patterns in each connected component. This
connected component is called a clone genealogy.

4. CLONE EVOLUTION ANALYSIS
To understand how clones evolve, we extracted clone ge-
nealogies from two Java open source projects, carol and dns-

java, and studied evolution patterns shown in the genealo-
gies. Carol is a library that allows clients to use different
RMI implementations and it has grown from 7878 lines of
code (LOC) to 23731 LOC from August 2002 to October
2004 (carol.objectweb.org). Dnsjava is a implementation of
DNS in Java, and it has grown from 5038 LOC to 20752
LOC from March 1999 to June 2004 (www.dnsjava.org).

In our analysis, we chose 37 versions out of 164 check-ins
of carol and 39 versions out of 47 releases of dnsjava that
resulted in changes of LOCC (the total number of lines of
code clones).

We set the minimum token length of CCFinder to be 30
tokens because many programmers do not consider short
clones as real clones. We set the similarity threshold simth

for cloning relationships to be 0.3 because empirically we
found that simth 0.3 does not underestimate or overestimate
the size or the length of genealogies.

CCFinder occasionally detects false positive clones that are
similar only in a token sequence, although common sense
says that they are not clones. If clones comprise only a syn-

tactic template, we consider the clones as false positives. In
our previous study of copy and paste programming prac-
tices [12], we defined “a syntactic template” as a template
of repeated code appearing in a row because a programmer
often copies and pastes a code fragment when writing a se-
ries of syntactically similar code fragments. For example, a
programmer often copies a field declaration statement when
writing a block of field declaration, an invocation statement
when writing a static initializer, or a case statement to write
a series of case statements in a switch-case block. We man-
ually removed 13 out of 122 genealogies in carol and 19 out
of 95 genealogies in dnsjava because they comprise only a
syntactic template.

Using the clone genealogy information, we intend to exam-
ine two research questions: (1) how serious is the problem
of code clones? and (2) whether would refactoring benefit
most code clones? For each research question, we describe
our analysis approach, initial result, and implication of our
result.

Q: How many code clones impose maintenance chal-

lenges?

If code clones stay dormant, these unchanging clones might
not pose challenges during software evolution. But consis-
tently changing clones would reduce productivity because
programmers often need to locate code clones and apply the
equivalent change to the code clones.

We define that a clone genealogy includes a consistently
changing pattern if and only if all lineages in the clone ge-
nealogy include at least one “consistent change” pattern.
Our definition is very conservative because, if one lineage in
the genealogy does not include a consistent change pattern,
the genealogy is considered not to have a consistent change
pattern. We measured the number of genealogies with a
consistent change pattern. Out of 109 genealogies in carol,
41 genealogies (38%) include a consistently changing pat-
tern. Out of 76 genealogies in dnsjava, 24 genealogies (32%)
include a consistently changing pasttern (see Table 1). This
result implies that programmers had faced the challenge of
updating clones consistently with other elements in the same
clone group.

Q: Would aggressive refactoring be the best solution

for maintaining code clones?

Finding a new abstraction to remove code duplication has
been a core approach for effective programming. There has
been a broad assumption that code clones are inherently
bad because code clones defy the principle of abstraction.
To examine the validity of this assumption, we set up two
hypotheses.

Hypothesis 1 : Many code clones are not locally factorable
given the primary design decisions of software and the limi-
tations of programming languages.

In our analysis, we define that a clone group is “locally fac-
torable” if a programmer can remove duplication with stan-
dard refactoring techniques, such as pull up a method, ex-

tract a method, remove a method, replace conditional with

polymorphism, etc [8]. On the other hand, if a program-
mer must make non-local changes in the design or modify
publicized interfaces to remove duplication of if a program-
mer cannot remove duplication due to programming lan-
guage limitations, we consider that the clone group is not
locally factorable. Our previous work describes a taxonomy
of locally unfactorable code clones that are often created by
copy and paste [12]. A clone lineage is locally unfactorable if
the latest clone group (a sink node of the lineage) is locally
unfactorable. We define that a clone genealogy is locally
unfactorable if and only if all clone lineages in the geneal-
ogy are locally unfactorable. A locally unfactorable geneal-
ogy means that a programmer cannot discontinue any of its
clone lineages by refactoring.

In the two subject programs, we inspected all clone lineages
and manually labeled them as “locally factorable” or “lo-
cally unfactorable.” Then, we measured how many clone
genealogies are locally unfactorable. 70 genealogies (64%) in
carol and 52 genealogies (68%) in dnsjava comprise locally
unfactorable clone groups; this result indicates that popu-

19

Distribution of Clone Genealogies (Carol)

0

2

4

6

8

10

12

14

16

1
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31
 34
 37

Genealogy's Age

N
um

be
r

of
 G

en
ea

lo
gy

Alive

Genealogy

Dead

Genealogy

Distribution of Clone Genealogies (Dnsjava)

0

2

4

6

8

10

12

1
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31
 34
 37

Genealogy's Age

N
um

be
r

of
 G

en
ea

lo
gy

Alive

Genealogy

Dead

Genealogy

Figure 2: Many clone genealogies disappear after a

relatively short time.

lar refactoring techniques would not benefit most clones. In
fact, we found that many long-lived, consistently changing
clones are locally unfactorable. Out of 37 genealogies that
lasted more than 20 versions in carol, 19 of them include
both consistent change patterns and locally unfactorable
clones. Out of 11 genealogies that lasted more than 20 ver-
sions in dnsjava, 3 of them include both consistent change
patterns and locally unfactorable clones.

Hypothesis 2 : Programmers prefer not to commit to a par-
ticular abstraction immediately when dealing with volatile
design decisions.

A dead genealogy means that all of its clone lineages were
discontinued because the code clones disappeared, diverged,
or they were refactored. An alive genealogy means that at
least one of its clone lineage is still evolving and the clones
have not disappeared yet. Figure 2 shows distribution of
dead and alive clone genealogies over their age. The age of
a clone genealogy is the number of versions that the geneal-
ogy spans. In carol, out of 53 dead genealogies, 42 genealo-
gies disappeared less than 10 versions. In dnsjava, out of 59
dead genealogies, 41 genealogies disappeared less than 10
versions. We believe that programmers created and main-
tained code clones while they explored new design space, and
then later, they removed, diverged, or refactored the code
clones as the relevant design decisions became stable. When
we manually inspected all dead lineages, we found that 25%
(carol) ∼ 48% (dnsjava) of them were discontinued because

of divergent changes in the clone group. Programmers would
not get the best return on their refactoring investment if the
clones are to diverge.

5. CLONE MAINTENANCE TOOLS
Our study result indicates that popular refactoring tech-
niques may not remove most code clones, especially clones
that are difficult to maintain. Thus, we propose clone main-
tenance tools as alternatives and supplements to refactoring.
This section lists possible software engineering tools that can
be built on top of our clone genealogy extractor.

5.1 Simultaneous Text Editing
Abstraction, isolating code duplication in a programming
language unit, provides two advantages during software evo-
lution. First, programmers can locate the duplicated logic
in one place. Second, programmers can apply the change
only once in the refactored code. Clone detectors automat-
ically locate code clones, resolving the first issue. However,
programmers still need to update code clones manually one
by one when the same change is required, leaving the sec-
ond issue unresolved. Simultaneous text editing [16] is a
new method for automating repetitive text editing. After
describing a set of regions to edit, the user can edit any one
record and see equivalent edits applied simultaneously to all
other records. We propose simultaneous editing of consis-
tently changing clones. The proposed editor uses clone ge-
nealogy information to automatically identify code snippets
that are likely to change consistently in the future. Then,
when a programmer edits one of the clones, upon request,
the equivalent edit is made to other clones simultaneously.
This proposed editor not only provides the same advantages
as abstraction but also allows divergent changes flexibly.

5.2 Cloning Related Bug Detection
Many programming errors occur when programmers create
and update code clones. For example, Li et al., found that a
few errors in Linux were created when a programmer copied
code but failed to rename identifiers correctly in the pasted
code [15]. As another example, Ying et al., also reported a
cloning related bug in Mozilla [18]; a web browser using gtk

UI toolkit and the version using xlib UI toolkit were code
clones. When a developer changed the version using gtk but
did not update the version using xlib, this missed update led
to a serious defect, called “huge font crashes X Windows.”
If a clone genealogy extractor finds clones that have changed
similarly before but change inconsistently later, this infor-
mation may strongly suggest a bug.

Programmers often copy and paste to reuse existing code
snippets. If the copied code contains a bug, this bug can be
propagated to many places via copy and paste. In Mozilla,
we found that a buggy code snippet was copied for 12 times
[12]. If the copied snippets did not change, a clone detec-
tor can locate the buggy snippets automatically. But if the
copied code was modified very differently from its template,
a clone detector may not be able to find it. Our clone ge-
nealogy tool infers how programmers copied, modified, and
evolved existing code. By traversing a genealogy graph, we
can locate code snippets that have originated from the same
buggy code even if they have changed very much.

20

5.3 Decision Support for Maintaining Code
Clones

Clone detectors assist programmers in locating code clones
automatically. However, even if programmers can find all
clones, they may not know which of them should be updated
together when the clones change. The history of code clones
may help programmers to make informed decisions about
how to manage code clone. For example, if a set of clone
snippets have changed consistently in the past, they might
evolve similarly in the future as well. Programmers can
decide what to change together based on the clone history.

We believe that there’s a right timing to refactor code clones.
If programmers refactor code clones too early, they might
not get the best return on their investment because the code
clones may diverge. On the other hand, if programmers
wait too long before they restructure code, they would get
only marginal benefit on their investment. Programmers can
decide when to refactor code clones based on clone genealogy
information: (1) how old clones are and (2) how clones have
changed in the past.

5.4 Locating the Origin of Copied Code
Programmers often copy an example code snippet or a work-
ing component and then modify a small part of it. If pro-
grammers do not fully understand the logic of the copied
code, they cannot adapt the copied code appropriately as
the related design changes. Besides, programmers may have
copied outdated example code and do not know how to make
it up-to-date. In these cases, programmers may want to
find the origin of copied code and consult the original au-
thor. However, CVS history retains only who checked in the
copied code but does not provide who is the original author
or when the original code was written. By overlaying au-
thorship on a clone genealogy, programmers would be able
to find the origin of frequently copied code.

6. CONCLUSIONS
There has been a broad assumption that code clones are
inherently bad because they defy the principle of abstrac-
tion. Thus, previous research efforts focused on mainly two
areas: automatically detecting code clones and educating
programmers how to remove or avoid clones. However, the
history of code clones indicates that this assumption may
not be necessarily true and that the current refactoring so-
lution may not work for many clones. We propose clone
maintenance tools that use clone genealogy information—
code clones’ history that is automatically extracted from a
source code repository.

7. ACKNOWLEDGMENTS
We thank Software Engineering Laboratory at the Osaka
University for providing CCFinder and GRASE lab at the
University of California, Santa Cruz for providing Kenyon.

8. REFERENCES
[1] http://www.cs.washington.edu/homes/miryung/cge.

[2] Micromodels of Software: Lightweight Modelling and

Analysis with Alloy. http://alloy.mit.edu, 2004.

[3] B. S. Baker. A program for identifying duplicated
code. Computing Science and Statistics, 24:49–57,
1992.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and
K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In WCRE, pages
98–107, 2000.

[5] H. A. Basit, D. C. Rajapakse, and S. Jarzabek.
Beyond templates: a study of clones in the STL and
some general implications. In ICSE, 2005.

[6] I. D. Baxter, A. Yahin, L. M. de Moura,
M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368–377, 1998.

[7] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In ICSM, pages 109–118, 1999.

[8] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 2000.

[9] GRASE-Lab. User Manual: Kenyon.
http://dforge.cse.ucsc.edu/projects/kenyon, 2005.

[10] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In CASCON.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans.

Software Eng., 28(7):654–670, 2002.

[12] M. Kim, L. Bergman, T. A. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE, pages 83–92, 2004.

[13] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In SAS, pages
40–56, 2001.

[14] J. Krinke. Identifying similar code with program
dependence graphs. In WCRE, pages 301–309, 2001.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI, pages 289–302, 2004.

[16] R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
USENIX Annual Technical Conference, General

Track, pages 161–174, 2001.

[17] E. Nickell and I. Smith. Extreme programming and
software clones. In the Proceedings of the International

Workshop on Software Clones, 2003.

[18] A. T. T. Ying, G. C. Murphy, R. Ng, and
M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Trans. Software Eng.,
30(9):574–586, 2004.

21

22

 Defect Analysis

23

When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany

sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyzeCVS archives forfix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such asCVS) to a bug database (such as
BUGZILLA). In a first investigation of theMOZILLA andECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.

In this work, we attempt to identify thosechanges that caused
problems.The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us thelocationof the fix.

3. We determine theearlier changeat this location that was ap-
plied before the bug was reported.

This earlier change is the one thatcausedthe later fix. We call such
a changefix-inducing.

What can one do with fix-inducing changes? Here are some po-
tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

Which change properties may lead to problems?We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign ametric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes?When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA andECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data fromversion archiveslike CVS andbug tracking
systemslike BUGZILLA .

A CVSarchive contains information about changes: Who changed
what, when, why, and how? Achangeδ transforms a revisionr1 to
a revisionr2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changesδ1, . . . , δn

form a transactiont if they were submitted toCVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. AsCVS records only individual changes
to files, we group these to transactions with asliding time window
approach [12].

A CVS archive also lacks information about thepurposeof a
change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine bothCVS and BUGZILLA for this step because this
increases the precision of our approach.

A BUGZILLA database collects bug reports that are submitted by
a reporterwith ashort descriptionand asummary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additionalcommentsand may createattachments. After the

24

BugDB

Bug 42233
JUnit code generated for
TestSuite is wrong [JUnit]
...

Change History
1.17 1.18 1.19

Fixed Bug
42233

Link Bugs
with Changes

Figure 1: Link transactions to bug reports

bug has been confirmed, it isassignedto a developer who is respon-
sible to fix the bug and finally commits her changes to the version
control archive.BUGZILLA also captures thestatusof a bug, e.g.,
UNCONFIRMED, NEW, ASSIGNED, RESOLVED, or CLOSEDand
the resolution, e.g.,FIXED, DUPLICATE, or INVALID . Details
on the lifecycle of a bug can be found in theBUGZILLA documen-
tation [10, Sections 6.3 and 6.4].

For our analysis, we mirror bothCVS andBUGZILLA in a local
database. Our mirroing techniques forCVS are described in [12].
To mirror aBUGZILLA database, we use itsXML export feature.
Additionally, we import attachments and activities directly from the
web interface ofBUGZILLA . Our localBUGZILLA database schema
is similar to the one described in [2].

3. IDENTIFYING FIXES
In order to locate fix-inducing changes, we first need to know

whether a change is a fix. A common practice among developers is
to include abug report numberin the comment whenever they fix a
defect associated with it.̌Cubraníc and Murphy [4] as well as Fis-
cher, Pinzger, and Gall [5, 6] exploited this practice to link changes
with bugs. Figure 1 sketches the basic idea of this approach.

In our work, we refine these techniques by assigning every link(t, b)
between a transactiont and a bugb two independent levels of con-
fidence: asyntacticlevel, inferring links from aCVS log to a bug
report, and asemanticlevel, validating a link via the bug report
data. These levels are later used to decide which links shall be
taken into account in our experiments.

3.1 Syntactic Analysis
In order to finds links to the bug database, we split every log

message into a stream of tokens. A token is one of the following
items:

• a bug number, if it matches one of the following regular ex-
pressions (given inFLEX syntax):

– bug[# \t]*[0-9]+ ,
– pr[# \t]*[0-9]+ ,
– show_bug\.cgi\?id=[0-9]+ , or
– \[[0-9]+\]

• aplain number, if it is a string of digits[0-9]+

• akeyword, if it matches the following regular expression:
fix(e[ds])?|bugs?|defects?|patch

• aword, if it is a string of alphanumeric characters

Every number is a potential link to a bug. For each link, we initially
assign a syntactic confidencesynof zero and raise the confidence
by one for each of the following conditions that is met:

1. The number is abug number.

2. The log message contains akeyword,
or the log message contains onlyplain or bug numbers.

Thus the syntactic confidencesynis always an integer number be-
tween 0 and 2. As an example, consider the following log mes-
sages:

• Fixed bug 53784: .class file missing
from jar file export
The link to the bug number 53784 gets a syntactic confidence
of 2 because it matches the regular expression forbug and
contains the keywordfixed .

• 52264, 51529
The links to bugs 52264 and 51529 have syntactic confi-
dence 1 because the log message contains only numbers.

• Updated copyrights to 2004
The link to the bug number 2004 has a syntactic confidence
of 0 because there is no syntactic evidence that this number
refers to a bug.

3.2 Semantic Analysis
In the previous section, we inferred links that point from a trans-

action to a bug report. To validate a link(t, b) we take information
about its transactiont and check it against information about its
bug reportb. Based on the outcome we assign the link a semantic
level of confidence.

Initially, a link (t, b) has semantic confidence of 0 which is raised
by 1 whenever one of the following conditions is met:

• The bugb has been resolved asFIXED at least once.1

• The short description of the bug reportb is contained in the
log message of the transactiont.

• The author of the transactiont has been assigned to the bugb.2

• One or more of the files affected by the transactiont have
been attached to the bugb.

This list is not meant to be exhaustive. One could for example
check whether a change has been committed to the repository with-
in a small timeframe around the time when a bug has been closed.3

Consider the following examples from ECLIPSE, which all have
low confidence levels:

• Updated copyrights to 2004
The potential bug report number “2004” is marked asinvalid
and thus the semantic confidence of the link is zero.

• Fixed bug mentioned in bug 64129,
comment 6
The number “6” appears in the comment for a fix. The syn-
tactic confidence is 1, but the semantic confidence is 0.

• Support expression like (i)+= 3; and new
int[] {1}[0] + syntax error improvement
“1” and “3” are (mistakenly) interpreted as bug report num-
bers here. Since the bug reports 1 and 3 have been fixed, the
links both get a semantic confidence of 1.

1Notice that only 27% of all bugs in theMOZILLA project are
FIXED (47% forECLIPSE).
2For this check, we need a mapping between theCVS and
BUGZILLA user accountsof a project. ForECLIPSE, we mapped
the accounts of the most active developers manually; forMOZILLA ,
we derived a simple heuristic based on the observation that email
addresses were used as logins for bothCVS andBUGZILLA .
3Čubraníc and Murphy already applied this as a standalone tech-
nique to relate bugs to transactions in theirHIPIKAT tool [4].

25

• Fixed bug 53784: .class file missing
from jar file export.
The bug 53784 has not been closed, but resolved asLATER.
Its short description is: “Different results when running un-
der debugger” and author of the change has not been assigned
this bug. Thus the semantic confidence of the link is 0.

However, there exists a bug 53284 with the following short
description: “.class file missing from jar file export”. If the
comment had contained a correct number, the link would be
assigned the semantic confidence 3.

3.3 Results
We identified 25,317 links forECLIPSE, connecting 47% of fixed

bugs with 29% of transactions and 53,574 links forMOZILLA , con-
necting 55.30% of fixed bugs with 43.91% of transactions. Ta-
bles 1 and 2 summarize the distribution of links across different
classes of syntactic and semantic levels for both projects.

Based on a manual inspection of several randomly chosen links
(see Section 3.2 for some examples), we decided to use only those
links whose syntactic and semantic levels of confidence satisfy the fol-
lowing condition:

sem > 1 ∨ (sem = 1 ∧ syn > 0)

Notice that we disregard less than 10% of links for both projects.
Our heuristics can be ported to almost any project that contains

in the log messages links to a bug database. In some cases it may be
necessary to implement further or different conditions to raise the
confidence levels. However, the quality of the linking will always
depend on the investigated project.

4. LOCATING FIX-INDUCING CHANGES
A fix-inducing change is a change that later gets undone by a fix.

In this section, we show how to automatically locate fix-inducing
changes.

Suppose that a changeδ ∈ t, which is known to be a fix for bug
b (thus a link(t, b) must exist), transforms the revisionr1 = 1.17
of Foo.java into r2 = 1.18 (see Figure 2), i.e.,δ introduces new
lines tor2 or changes and removes lines ofr1. First, we detect the
linesL that have been touched byδ in r1. These are the locations of
the fix. To locate them, we use theCVSdiff command. In our exam-
ple, we assume that line 20 and 40 have been changed and line 60
has been deleted, thus the fix locations inr1 areL = {20; 40; 60}.

Next, we call theCVSannotatecommand for revisionr1 = 1.17
because this was the last revision without the fix; in contrast, revi-
sion r2 = 1.18 already contains the applied fix. The annotations
prepend each line with the most recent revision that touched this
line. Additionally, CVS includes the developer and the date in the
output. We show an excerpt of the annotated file in Figure 3. The
CVS annotatecommand is only reliable for text files, thus we ig-
nore all files that are marked as binary in the repository.

We scan the output and take for each linel ∈ L the revisionr0

that annotates linel. These revisions are candidates for fix-inducing
changes. We add(r0, r2) to the candidate setS, which is in our
exampleS = {(1.11, 1.18); (1.14, 1.18); (1.16, 1.18)}.

From this set, we remove pairs(ra, rb) for which it is not possi-
ble thatra induced the fixrb—for instance, becausera was com-
mitted to CVS after the bug fixed byrb has been reported. In
particular, we say that such a pair(ra, rb) is a suspectif ra was
committed after thelatestreported bug linked with the revisionrb.
Suspect changes could not contribute to the failure observed in the
bug report. In Figure 2 the pairs(1.14, 1.18) and(1.16, 1.18) are
examples of suspects.

We investigate suspects further on:

Bug 42233 was reported.

1.14 1.16
b() was
changed

c() was
changed

a() was
changed

1.11 1.18

Fixed Bug
42233

Changed:
a() b() c()

12-Feb-03 23-May-03 10-Jun-03

3-Apr-03

Figure 2: Locate fix-inducing changes for bug 42233

$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;

. . .
39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;

. . .
59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;

. . .

Figure 3: CVS annotations for Foo.java

• We say that a suspect(ra, rb) is apartial fix if ra is a fix.

Some bugs are fixed more than once. It may happen that one
of the previous attempts was fixed by a later one, or that the
bug is fixed across several transactions.

• We say that a suspect(ra, rb) is aweak suspectif there exists
a pair(ra, rc) which is not a suspect.

A weak suspect indicates a revision for which there exists
an alternative evidence of being fix-inducing, e.g, revision
1.14 may be a suspect for bug 42233 in Figure 2, but it still
can be a strong candidate for another bug.

• We say that a suspect(ra, rb) is ahard suspectif it is neither
a partial fix, nor a weak suspect.

A hard suspect indicates a revision for which there is no real
evidence of being fix-inducing.

We say that a revisionr is fix-inducing if there exists a pair
(r, rx) ∈ S which is not a hard suspect. We say that a transac-
tion t is fix-inducingif one of its revisions is fix-inducing.

5. FIRST RESULTS
We extracted fix-inducing changes for two large open-source

projects:ECLIPSEandMOZILLA . We considered all changes and
bugs until January 20, 2005; our database contains 78,954 trans-
actions forECLIPSEand 109,658 transactions forMOZILLA . They
account for 278,010 and 392,972 individual revisions for both proj-
ects, respectively.

5.1 Fix-Inducing Transactions are Large
In our first experiment, we examined if the span of the trans-

action (i.e. the number of files touched) correlates with the fact
that the transaction is fix-inducing. Table 3 presents the average
sizes of transactions forECLIPSE. The transactions are split into
four classes, depending on whether the transaction is a fix, fix-in-
ducing, both, or none. For instance, the top-left cell means that

26

syn / sem 0 1 2 3 4 total

0 270 (1%) 1,287 (5%) 2,057 (8%) 1,439 (6%) 2 (0%) 5,055 (20%)
1 324 (1%) 4,152 (16%) 9,265 (37%) 1,581 (6%) 5 (0%) 15,327 (61%)
2 110 (0%) 1,922 (8%) 2,421 (10%) 482 (2%) 0 (0%) 4,935 (19%)

total 704 (3%) 7,361 (29%) 13,743 (54%) 3,502 (14%) 7 (0%) 25,317 (100%)

Table 1: Distribution of links accross different classes of syntactic and semantic confidence levels in ECLIPSE

syn / sem 0 1 2 3 4 total

0 560 (1%) 2,899 (5%) 4,281 (8%) 639 (1%) 8 (0%) 8,387 (16%)
1 1,211 (2%) 9,059 (17%) 16,336 (30%) 2,241 (4%) 22 (0%) 28,669 (54%)
2 478 (1%) 5,250 (10%) 9,133 (17%) 1,645 (3%) 12 (0%) 16,518 (31%)

total 2,249 (4%) 17,208 (32%) 29,750 (55%) 4,525 (8%) 42 (0%) 53,574 (100%)

Table 2: Distribution of links accross different classes of syntactic and semantic confidence levels in MOZILLA

fix-inducing ¬fix-inducing all

fix 3.82±26.32 2.08± 7.42 2.73± 7.87
¬ fix 11.30±63.02 2.77±14.94 3.81±26.32

all 7.49±44.37 2.61±13.66 3.52±22.81

Table 3: Average sizes of fix and fix-inducing transactions for
ECLIPSE

fix-inducing ¬fix-inducing all

fix 5.79±37.37 2.12± 9.74 4.39±30.05
¬ fix 4.61±30.59 1.91±10.30 3.05±21.39

all 5.19±34.12 1.97±10.13 3.58±25.23

Table 4: Average sizes of fix and fix-inducing transactions for
MOZILLA

the average size of transactions which are fixesand induce later on
a fix is 3.82 (with a standard deviation “±” of 26.32).

Additionally, Table 3 shows that fix-inducing transactions are
roughly three times larger than non fix-inducing transactions. Ta-
ble 4 presents the same breakdown forMOZILLA which shows
a similar trend.

Such data can be automatically retrieved from all projects that
supply both a version archive and a bug database. It is especially
worthy when deciding where to spend efforts inquality assurance.
If we were in charge of theECLIPSEproject, for instance, we would
take care that large extensions are well reviewed and tested, as these
have a high potential for inducing later fixes.

5.2 Don’t Program on Fridays
We broke down changes by the day of the week when they were

applied. We distinguished betweenbugsas indicated by fix-inducing
changes, andfixesas detected by links to the bug database. Bugs
may be also fixes, we refer to such changes asfix-inducing fixes;
they have been previously been used for visualization by Baker and
Eick [1]. Finally, there are changes that are no bugs and no fixes.

P (fix) + P (bug)− P (bug∩ fix) + P (¬bug∩ ¬fix) = 100%

We measured the frequencies of the categories mentioned above.
Table 5 presents the results forECLIPSE. The likelihoodP (bug)
that a change will induce a fix is highest on Friday. The same holds

Day of Week

% of revisions Mon Tue Wed Thu Fri Sat Sun avg

P (fix) 18.4 20.9 20.0 22.3 24.0 14.7 16.9 20.8
P (bug) 11.3 10.4 11.1 12.1 12.2 11.7 11.6 11.4
P (bug∩ fix) 4.6 4.8 4.6 5.2 5.6 4.5 4.5 4.9
P (¬bug∩ ¬fix) 74.9 73.5 73.5 70.8 63.4 78.1 76.0 72.7

P (bug| fix) 25.1 22.9 23.3 23.5 23.2 30.3 26.4 23.7
P (bug| ¬fix) 8.2 7.1 8.1 8.8 8.7 8.4 8.6 8.1

Table 5: Distribution of fixes and fix-inducing changes across
day of week in ECLIPSE

Day of Week

% of revisions Mon Tue Wed Thu Fri Sat Sun avg

P (fix) 42.5 46.5 49.7 45.9 48.4 50.2 61.1 48.5
P (bug) 39.1 44.1 41.2 40.8 46.2 44.9 26.4 41.5
P (bug∩ fix) 19.4 23.6 22.8 21.6 26.9 19.6 13.2 21.9
P (¬bug∩ ¬fix) 37.8 33.0 31.9 34.9 32.3 24.5 25.7 31.9

P (bug| fix) 45.7 50.8 45.8 47.1 55.6 39.1 21.6 45.2
P (bug| ¬fix) 34.1 38.3 36.7 35.5 37.3 50.6 33.9 38.1

Table 6: Distribution of fixes and fix-inducing changes across
day of week in MOZILLA

for MOZILLA (see Table 6). Friday is the day where mostECLIPSE
developers do fixes, forMOZILLA this is Sunday.

We used fix-inducing fixes to investigate whether non-fixes or
fixes are more likely to be fix-inducing. Table 5 shows that for
ECLIPSE, the average likelihood of introducing a fix-inducing change
is almost three times higher for fixes, indicated byP (bug| fix), than
for regular changes, indicated byP (bug| ¬fix). This does not hold
for MOZILLA (see Table 6). The risk that a fix will be later undone
is highest forECLIPSEon Saturdays, and forMOZILLA on Fridays.

Almost every second change inMOZILLA is a fix and two out
of five changes are fix-inducing. In the future we will investigate
MOZILLA to find out what makesMOZILLA risky.

Besides the day of week, one can easily determine further prop-
erties of a change that correlate with inducing fixes—such as the
development group, or the involved modules. Again, all this data is
automatically retrieved for arbitrary projects.

27

6. RELATED WORK
To our knowledge, this is the first work that shows how to locate

fix-inducing changes in version archives. However, fix-inducing
changes have been used previously under the namedependencies
by Purushothaman and Perry [9] to measure the likelihood that
small changes introduce errors. Baker and Eick proposed a similar
concept offix-on-fix changes[1]. Fix-on-fix changes are less gen-
eral than fix-inducing changes because they require both changes
to be fixes.

In order to locate fix-inducing changes, we need first toiden-
tify fixes in the version archive. Mockus and Votta developed a
technique that identifies reasons for changes (e.g., fixes) in the log
message of a transaction [7]. In our approach, we refine the tech-
niques ofČubraníc and Murphy [4] and of Fischer, Pinzger, and
Gall [6, 5], who identified references to bug databases in log mes-
sages and used these references to infer links fromCVS archives to
BUGZILLA databases.

Čubraníc and Murphy additionally inferred links in the other di-
rection, fromBUGZILLA databases toCVSarchives, by relating bug
activities to changes. This has the advantage to identify fixes that
are not referenced in log messages. For more details about this
approach, we refer to [3].

Rather than searching for fix-inducing changes, one can also di-
rectly determinefailure-inducing changes,where the presence of
the failure is determined by an automated test. This was explored
by Zeller, applying Delta Debugging on multiple versions [11].

7. CONCLUSION
As soon as a project has a bug database as well as a version

archive, we can link the two to identify those changes that caused
a problem. Such fix-inducing changes have a wide range of appli-
cations. In this paper, we examined the properties of fix-inducing
changes in theECLIPSEandMOZILLA projects and found, among
others, that the larger a change, the more likely it is to induce a
fix; checking for other correlated properties is straight-forward. We
also found that in theECLIPSEproject, fixes are three times as likely
to induce a later change than ordinary enhancements. Such findings
can be generated automatically for arbitrary projects.

Besides the applications listed in Section 1, our future work will
focus on the following topics:

Which properties are correlated with inducing fixes? These can
be properties of the change itself, but also properties or met-
rics of the object being changed. This is a wide area with
several future applications.

How do we disambiguate earlier changes?If a fixed location has
been changed multiple times in the past, which of these chang-
es should we consider as inducing the fix? We are currently
evaluating a number of disambiguation techniques.

How do we present the results?Simply knowing which changes
are fix-inducing is one thing, but we also need to present our
findings. We are currently exploring visualization techniques
to help managers as well as programmers.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.
This project is funded by the Deutsche Forschungsgemeinschaft,
grant Ze 509/1-1. Christian Lindig and the anonymous MSR re-
viewers provided valuable comments on earlier revisions of this
paper.

8. REFERENCES
[1] M. J. Baker and S. G. Eick. Visualizing software systems. In

Proceedings of the 16th International Conference on
Software Engineering, pages 59–70. IEEE Computer Society
Press, May 1994.

[2] N. Barnes. Bugzilla database schema. Technical report,
Ravenbrook Limited, July 2004.
http://www.ravenbrook.com/project/p4dti/master/design/
bugzilla-schema/.

[3] D. Čubraníc. Project History as a Group Memory: Learning
From the Past. PhD thesis, University of British Columbia,
Canada, Dec. 2004.

[4] D. Čubraníc and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. InProc. 25th
International Conference on Software Engineering (ICSE),
pages 408–418, Portland, Oregon, May 2003.

[5] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. InProc. 10th Working
Conference on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProc. International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept.
2003. IEEE.

[7] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. InProc. International
Conference on Software Maintenance (ICSM 2000), pages
120–130, San Jose, California, USA, Oct. 2000. IEEE.

[8] Proc. International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, Scotland, UK, May
2004.

[9] R. Purushothaman and D. E. Perry. Towards understanding
the rhetoric of small changes. In MSR 2004 [8], pages 90–94.

[10] The Bugzilla Team.The Bugzilla Guide - 2.18 Release, Jan.
2005. http://www.bugzilla.org/docs/2.18/html/.

[11] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? InProceedings of Joint 7th European Software
Engineering Conference (ESEC) and 7th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE-7), volume LNCS 1687. Springer Verlag,
1999.

[12] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In MSR 2004 [8], pages 2–6.

28

http://www.st.cs.uni-sb.de/softevo/

Error Detection by Refactoring Reconstruction

Carsten Görg
Saarland University
Computer Science

D-66041 Saarbrücken
Germany

goerg@cs.uni-sb.de

Peter Weißgerber
Catholic University Eichstätt

Computer Science
D-85072 Eichstätt

Germany

peter.weissgerber@ku-eichstaett.de

ABSTRACT
�� ���� ����� �	 �� �
	 ��Æ����	 	
 ��
�

� �
����	

���

��� �	
�� �
��	�
�
� � �
�	��
� �

���	� �

 ��������

����	

���� ��� ���� 	
 �� ��
�

��� �
����	��	�� 	
 ����
�
�� ������� �� 	�� ����
�	���� ���
�
���� ���� ����������

��������	��� �������� 	
 �
���
�� ����� ������

�

�� 	��� ����
 �� ��
� �
� 	
 ��	��	 ���
����	�
����	

�
���� � ����� ��� ����� �
�� �	������ ���� ������� �
��
�
	��� �
 �
	 ����� �
�����
 �

� � �� ��������� �
�	��
�
�
������� �
 	��� ��� ��
��
��	
��	 	�� ����� ����
�	����
���
�
������ �� ���� ��
����	

����
� 	�� �����
� ��	�
���
����� ��
���	� 	����
����	

���� 	
 	�� �

���
����� ���
�
�
��� ��

��
 	
 �� �������
����	

���� ��� 	���� �

�
��� ���
����	������ 	��	 ���� ���� ��	

����� �� � �
�	��
�
�

���	 �	 �
�� �
��	
� 	�� ���	

��

�������� �� ���
��	
�	�
�
 ���

��� �� ���� �	�����
� 	�

��� �
�
�� �

���	��

1. INTRODUCTION
!����	

��� �� 	�� �

����
� �������� � �
�	��
� ���	�� ����
	��	 �	 �
�� �
	 ��	�
 	�� ��	�
��� ������

� 	�� �
��� ��	
���

��� �	� ��	�
��� �	
��	�
� "#$� �� ���� ����� 	�� ����

����	

��� ��� 	
 �� ������� 	
 �

� 	���
�� ��	�	� 	

������� 	��	 	�� ������

����� �
�� �
	 ��	�
� �

 ��������
�������� � ��	�
� �����	�
�
�	��
����
�� 	
 ������ 	��
�����	�
�
� ��	�
�� �� ���� ����
� ��� ������� ������� ��
����� �
 ���� �

�
����
� ��	� 	��� 	��% �
��
� ��	��
�	��
�����
����	 ����

����	�� ��%� ������� "&$� �

���� '�����(
��	
��	�� �������	�
�
�
����	

��� 	
 � �
�	��
� �

���	�
)�	 ���

	���	���� �
	 ��� �

�
����
� ��%� �
����	��	 ���

� 	��� ���	�
� ��� �
������ ��	

���� ����� ����� �
� ��
�
	
 �� ��	�

��

�� 	��� ����
� �� ��
� �� ���

��� 	
 �����	���	� 	�� ������
��	�
�
�
����	

����
��
 	�� ����	���
� � �
�	��
� ���	���
�� ��
	�����
 �� ����% ��
����	

���� ���� ���� ��
�

���

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...*5.00

�
����	��	��� ���� �� ���� � ��� 	��	 	�� ������

� 	�� �
�	�
��
� ���	�� ��� �
	 ��	�
��� +� �
����	
�	�
�
����	

�
����
� 	���� ���������� �	
	����
 ��� ���	��
������
+��� �
����	

���
�
��
� 	���� 	���� �� ������� 	
 �
��	�
� �� � ������ �	 ��
��� ���
 �� ������� 	
 	�� �

���
�
����� ��	�
��
� ���������� �� �
�	 ������ ��� �� �
��
����� ����
� ������� �������� �� � �����
��
 ����� 	
 �
 �
�
	�
 %����
� �

� ���
���
,

� �� ����
�	�� ������ �
 	� 	���
	�� ������ �� �� �����

����������� �� 	 �����	��� ���� %���
� �

����	�
�� �
����� 	��� �

�� ��� 	���� �� ���� 	
 ��	��	�

� ���
��	���
�� ������ �� ����
���� �� 	 �����	�� ���
���	� �� ����� ���
�
������ -
����
� 	�� �

���	 ���
�	��� �� �
������ ��	�
�	 ��� �

����� ���� 	���� 	��
�����
��
 ��� �
	 �
	��� 	�� �

���� �

 � �
�� 	����

.�
 ���

��� �� ���������� �� 	�
 �����
�
�, ��
�	� �� ���
���
�� �� ����	��� �
�	��
�
��
��	

��� �

 ���
����	�
�����
	

���� 	��	 ���� ���� �
�� �� 	�� ���	 ��� ���� �
	 ����
�

��	�� ��	� �� ����	�
� 	
 	���� �� ��� �����	 	�� ������

��
 ��	� 	�� ����� �

%, /��
� 	��� 	�� �����
��
 �
���	�
�
�
�� �
�� 	
 	��
��
��	

� � 	

� ��� ����% 	�� �
���		��
�
�� �

 ���
����	�
����	

���� ��� ��
� �� �������
��

���
�������

� 	��� ����
 ��

������� �� �
��
��, ��
�	�
�� ������� �� 0��	�
� # �
�
����	

���� ��� �� ��	
��	��
�

� � �
�	��
� �
������ ����� �� 0��	�
� 1 �� ��
� �
�
	
 ����% �

 �
����	����
� 	��
��
��	
��	��
����	

�����
0��	�
� 2 �
����	� ���� �	�����
� 	�

��� �
�
�� �

���	��
3�	�
 	��	� ��
�	����
���	�� �

% �� 0��	�
� 4� ��������
0��	�
� 5 �����
����
�
 �������

2. UNCOVERING REFACTORINGS
�� 	��� ���	�
� �� �
����	 � 	�������� 	
 ��	��	
����	

����

� 	�� �����
� ��	�
�� �� � �
�	��
� �
����� ������� ��
��� "6$� 3	
�	� �� ������� �
� �� �
��

���� 	��
��
���
	

� ��	� 	
 ��	 ���� ��� ���	 ������ 	
 �	� 3�	�
 	��	� ��
	�%� � ��
��
 �

%
� �
� 	

�	
���� ������� ��� ��	�
��

� ���� ���� +� ���� 	��� ���

��	�
� �� 	�� �
��
���� �	��
���
� �� ������� �� ��	�
�� ���� ����
����	

�� ��
��
������ 	����

 ������
����
��
���� ��
���	�
�� 3�	�

	��	� �� ������� �� ��� �

�� �
� �� ���� ��	� ����	�
���
������� 	

����	

�� ��	�
�� ��� ��	� ������
��
�����
	

����� �������� �� ������� �
� ��
���	�
����	

���� 	

29

�
����	� �
� ��
�	�
��
� 	�� �
�	��
� �

���	� 3 �

� ���
	����� ��� �

��� ����
��	�
�
� 	��� 	�������� �� ����
����
�� "1$�

2.1 Preprocessing the CVS Data
7��

	���	���� 	�� ��
��	 ������
� 	�� ��	� �� ���� 	

��
�� ��� ��
	��
�

�� �
�� ���

��	�
� ��� 	
 ��
��
��
��
�

� ��8�
��	 ������
� 	��
��
��	

�� ����� 	��
�	 �	��

�
�
 	�������� �� 	
 ��	
��	 	��
��
��	

� �
����	����
��
�
��
 ���

��	�
� ���
� �������
�� ��� �	

� 	��� ��	� ��
�
���	�
��� ��	������ ��� ��	����
� 	��� ��	
��	�
� �	��
�
� ����
���� �� "9$� 3�	�
 	�� ��	
��	�
� �� ��� ������ 	��
�
��
���� ���

��	�
�,

��������� 3 ��
���� ����
����
��
�����
�
� � �� �� 	��
���
��
��	

� '���� �� ���������������	
	 ��
����
��
� 6�2(� �

 ����
�����
� �� 	��
��
��	

� �� �	

�
���

��	�
� ��
�	 	�� �
���		�
� 	�� �
� �������� 	��
	����	���� 	�� �	�	�� 	�� �
�������

�����
� ��
��
����	�� ��� 	�� 	��	�

��	��	
������ 3 �
	��	����� �� 	�� ��	
� ��
��
�� 	��	
���� ���� �
���		�� 	
 	��
��
��	

� �	 	�� ����
	��� �� 	�� ���� �����
��
� 3� ��� ����	� �
���	�
	��	 �
�	��� �

� 	���
�� �� ��	
 ������ ����%���� �

���� �� ��� �
�� �
	 �	

� �����
� 	���� ����%����
���� ���� ������ 	
��	��
� �� ��� � ������� 	��� ����
�
� ���
��	�� 	

��
��
 	
�����	�
�� ���	� �
��������

3���	�
������ �� ���� ���

��	�
� ��
�	 ��
	�����
 ������
�
	������ 3 �
� ��
�	�
� �� � ��	
� ��
��
��
� ���	���	 ����
��
�
 �������	�
�� �� �
�
��� ��	�
��	�� �� 	����� ������
�
	����� 	���
 �
	��	������� 3� ��	��� �
� ��
�	�
� ��	�
 �
	
�����	�
� �� 	�� ��	
� ��
��
�� � �����
��
 ��� ������ ��
��� �

%��� ��
��	

� ��	�
 ��
�

���� 	�� 	
�����	�
��

�� �� ���	 	
 ������� � ��� �
���	 	
 	��
��
��	

� ���
�	���
� ���
����� ����	��� �����
��� �	 �� ��Æ����	 	
 �
�����

	�� ��	
� ��
��
�� ���
����� 	
 	�� ��

��	 �
���	 ��� 	

����� 	�� ��	��� �
� ��
�	�
� ��	�
 	��� �
���		�� 	
������
	�
��

2.2 Parsing Syntactical Blocks of Versions
�
 ��	��
 ���

��	�
� ��
�	 ����� ������� ��� ��	�
�� �
�
�
�	����� �� � ���� �� '��� 	���� ��� �� �8��	�� ��
�����
	

����(�� ��� � ����	������	 ��
��
 	��	 ����	� �� �(�������
�� ��
��
�� ��� �(��	�
�� �� �������� ��� ������� �
� �����
	� �� �� �	� ����������� �� ���� ����� ��	�
�� �
� ����	��
 �� �� 	���
 �����	�
�� ���� �	�����
��
��������
� �� ��
�
���
� 	�� �������
� � ��
��
� � 	
 	�� �������
� �	� �
��
������

 ��
��
� ��� �� �
	� �� �������'�� �

�(�� ��	
�
������� 	��	 ����	 �� �
	� � ��� ���

�

 ���� ����� � � �������'�� �
�(�� ��� �
� �
���	� 	��

��	�
� ������
��
���� ��� �
��
� ��	�
�� �� �
���
���
	�� ��	�
�� �
�	����� �� 	�� ����� �� � ��	� 	�� ��	�
�� ��
	�� �

���
����� ����� �� ��,

� ������'�� �
�� �(��	�
� 	��	 ���� ���� ����� 	
 �:

� �������'�� �
�� �(��	�
�� 	��	 �
� �
�	����� �� �

�� �
	� ��
��
�� �� ��� �:

� ��������'�� �
�� �(��	�
�� 	��	 ���� ���� ����	��

�

� ��

2.3 Identifying Local Refactorings
�
 ��
����	

���� ��
�

��� �� ������ ������� �� �	�
�	�

��
 	�� ��	 ��
� ��� ��
��
��
� ���� ��� �� 	��
��
��	

��
3�
����	

���� ����
��� ������� ��	�
�����	 	
 	�� �
����
����

 ��
��
�� �� ���

� ��
��
�� 	��	 ���� �
 �
�������

�
�

 ���
�������� � � ��� �� 	�%� 	�� �
�������

 ��
��
� ��

��� 	��	 �� ��� ������� � � �������'�� �
�(�� �� ��� ��

��
� 	�� �
��
����
����	

����,

Rename Method.
�� �� �� � ��	�
��� � ��������'�� �

�� �(��� � ��	�
�
�� � ������'�� �

�� �(��	 ���� ����	�� 	�� ���� 	��	� 	��
����
�	�
� 	���� 	�� ���� ��
���	�
�� ��	 ��8�
��	 �����
�� �
�����
 	��� �� � ���	��
�����
����	

����

Add Parameter.
�� �� �� � ��	�
��� � ��������'�� �

�� �(��� � ��	�
�
�� � ������'�� �

�� �(��	 ���� 	�� ���� ���� ��� 	��
����
�	�
� 	���� ��	 �� ��� ����	�
��� ��
���	�
� ��	�

�����	 	
 ��� �� �
�����
 	��� �� �� ��� �	
	����

�����
	

���� ��� ������ �	
	����

����	

��� ��
��
������
����
�
�����

2.4 Impure and Ambiguous Refactorings
3 ���

 �

���� �� ��
���� 	�� ��
��
� �
����� �

����	

�
���� �� 	��	
�	�� 	��
����	

���� �
� ����
�, ��� �����
��

��� �
	
��� ��
�

��� 	��
����	

���� ��	 ��� �������

	��
 	����� �	 	�� ���� �
��	�
� �	 	�� ���� 	����

 	��
�����
��
 ��� ��
�

��� 	�
 ��8�
��	
����	

����
� 	��
���� ��	�	�� .�
 ���

��� �� �
	 ������� 	
 �� ���	��

����� ��� ���������� �	
	����

����	

���� 	��	 ����
���� ������� 	
 	�� ���� ��	�	� �� 	�� ���� 	
�����	�
��
�� ����	�
�� 	����
����	

���� ����
	 ��
��
������ ��
	��

������� ���� ���� �����	���
���� ��
�

��� 	
 	�� ��	�
�
�����	�
� '���� ����� ��
���	�
 ���	� ���
�	�
� 	���(� -
��
���
� ��
��� 	�� �
��
� 	�� ��	�
� ��� ���� ������� 	
�
��	��
 ��	� 	��
����	

���� �� �	��� ��	��	 ���������� �	
�
	����

����	

����� 3� � �
���������� �	 ��� ������ 	��	
�� ���� 	
 ��	��	 �
�� ���
����	��	
����	

����, 3����� 	��	
�� ����� � � ��	�
� ��� ����
������ ��� �	 	�� ���� 	���
�� ����	�
��� ��
���	�
 ��� ���� ������ ��
	��
�

�� ���
���� 	��	 ����� � �� � ��������
� �� ����� 	�� �

���
�����
��	�
� �� � ��� 	
 ��
����	

�� 	�� ���� ����)�	� �� ��
����
	 ��	��	 	��
����	

��� �� � �� ���
 ����
	 ��	��	 �� �
��� ����
����	

�� ��	 � ��� ���� �������

7��

	���	���� �	 �� �
	 ������ �
������ 	
 ��������
����
����	��� ���
����	

���� �� 	�� �
��
���� ������� �����	
�	��,
� ����� �
�	���� 	�� ��	�
�� �'
��
�(,
� ��� �'
��
�(,
�
��� ��	�
 � ��� 	
�����	�
� �	 �
�	���� ���	���
� 	���� 	�

	�� ��� ��	�
� �'
��
��
�(,
�� ;
� �	 �� ����������� ��
	��� �� �� ��� �	
	����

����	

��� �

� �'
��
�(,
� ��
������
�

 �

� �'
��
�(,
� �� ������
�� �� ���� ������
�� 	�%� ��� ��	�����
����	

���� ��	
 ���
��	�

2.5 Relating Refactorings to Configurations
�
 ��	��	 �

� �	 �� �
	 ��Æ����	
��� 	
 �

% �	 	�� �������
	��	 ���� ���� ��

��	�� ������� ��� ��� �
�	���
����	

�
����� ��	 ���
 �	 	��
	��
 ������� 	��	 ���� ���� ��
	
�

30

	�� �

���	 ��� '����� �

��
����(�
	 ���� ���� ����	��
���� 	�� �����
��
 ��� ��
�

��� 	�� ����%��� 	
 	��
��
���
	

�� ����� ����	�
����� 	
 	�� ������� ��
��
��� �

 ����
 �� 	��	 ��� �
	 ���� ������� �� � 	
�����	�
� �� 	�%� 	��
�
�	
����	 ��
��
� ��	
 ���
��	 ��� ��
�� �	 �

 �	� �������
��� ��	�
��� +� ���� 	�� ��	
� ������� ��
��
�� ��� �
�	

����	 ��
��
��
� �
��������� ��� 	�� ������
	���� 	�����
	���
 �
	��	����� ��

2.6 Reconstructing the Class Hierarchy
)��

� �� ��� ����% ��
����	

���� ���� ���� ������� �
��
���	��	�� 	

���	�� ������� ��	�
�����	 	
 	�� ����� ���
�
����
�� ���� 	
 �
��	
��	 	�� ����
�	���� 	
��
� 	�� ��������
���� �

���	� ����� �� �	�
�	�
��
 	�� ��	
� 	
�����	�
��
��� ����� �

 ���� 	�� �
� ��
�	�
� ��	��� ��	�
 �	� �

 ����
���� �
� ��
�	�
� �� %�
� 	�� ��	
� �
����� ��	���� � 	����
�
� 	�� ���� ������� �� 	�� �

%�����
� 	�� �����
��
 ��	�

	�� 	
�����	�
�� ����� 	�� ����
�	���� 	
�� �

 �
	� ������
����� ��� �������
���	�
�� �� ����	 �� �	�
�	���
��
 	����
�

���	 �������� ��
���� 	��� �

 	�� �����
�	�
�� ��	�
 	��
��������
�
���� ��
���� %���

� ���
���	��� 	�� �
���
�����
���
����� '����� 	�� ���

	 �����
�	�
��(
 �(��
�������
� 	�� ���� �	����
� ��� ��� �(�� ������� �
�	�����
�� ��	 ����

3. CHECKING CONSISTENCY
�� 	��� ���	�
� �� ������� �
� �� ����% �� 	��
��
��	
��	��

����	

����
� 	���� ���	��
����� ��� ���������� �	
�
	����
 ���� ���� ������� �
����	��	�� 	
 	�� �
�	��
� �

�
���	� �

 ����
����	

��� �� �
���	� � ���	
�
	��
 �
��
����� �������	�� �� 	�� ��

��	 �
� ��
�	�
� ��� ����% �� 	��

����	

��� ��� ���� ������� ���
 	
 	���� �� �
	� ��
���
�
	��� �� � �
������ ���
����	�����

��� ���	
� �
������� �������	�� �� �
���	�� �� �
��
��, <�	
	
� �� �
����	

��� �������� 	�� ��
���	�
 ���	
� ��	�
��

�� ����� � �� �
� ��
�	�
� �
��� �

� ��	���
�
	
 ��	���

�
��

�
� ��
�	�
� �
���� �� �� �
� ��
�	�
� �
��� ����	� � ����
�
������ ��������

 ������� ������
� ����� � 	��	 �
�	���� 	��
��	�
� � ��	� ��
���	�
 ���	 ��	���

�
	��� 	��� ��	�
� ��

� �
������ �������	� �

 � �������
����	

���� 3���
�
�����
�� �
���	� ��
	��
 �������	�� �� 	�%���
����	

����
��
������ � ��	�
� ��	
 ���
��	�

��� ��	�
�� �
��� �� �������	�� ����	 ��	
 	�
 ��8�
��	
��	��

���,

� ���
��� �� ���
�	����� �� ��	�
�� �� � ����� �
�

����	

�� �	 �� ��%��� 	��	
��
�
�		�� ��	�
�� �� ����
������� ��
��� ��
����	

�� 	�� ���� ���� �

 	���
	���
� �

 �������	��
�� ��� ���	������� ��	����
	�
 ���	����, �� 	�� ����
����� �� �� ��	�
����� 	��
��
����	

�� ���������� �
 �
	 ��������	 	�� ��	�
�
���� �

��	�� ����

� ��� 	���� ����
	 �� �
������
������������� .	��
����� 	�� �8��	�� �������� ����
�	�
	��
����	

�� ��	�
� �

� 	�� ����
����� ��� ����
�	�
������ �
��� �	�
�� ��
����	

�� ��	�
�� �����
	�� ����� ��� �� �
������� ��	 ��� ������ ���

��	���

�� ������� �����
� ����� � �� �� �
��	
�
� ��������
� � ����
�
�����
� ����� ��

� ���
��� �� �������
�	����� ���
� �
� ���
 �����
���� ������� ������� ���� 	
 �� ����	�� ��	�
��� 	��
����
����� ��� �
	 	
 �� ����	��� �

 �������� ��
��
	
�����	�
�
� ��
�� �	 	�� ���� 	��� �� �
	� �������
���	���������
���������	����� ��� ���	���� ���!"
��������
���������	����� 	�� ��	�
� ����� ���!��
��� ����
������ 	
 �����#���	���� 3� �
	� �������
�
� ����������
� 	�� �	����
� ���� ����� �������	�
��
	�� ��	�
�� ��������	�� �� 	���� ��	�
�� �
� �
	 ���
�	��	�� 	
����
�� ��� �

� ���� 	�� �
��� ��� ����
����%��� ��	 �
	 ��	�� 	�� �
��� ��� ����
�������
������ =���
��� 	���
����	

��� ��
��� �� ������� �	
	�� ���� 	��� 	
 ��� ������� ��	������ �

� �����"

��	�
�� 	
 �
���
�� � �
����	��	 ���
 ��	�
�����

3� �� ������� 	�� ��
�� �
�	��
� �
����� ��� �	�
	 ��	� 	��

����	 �
� ��
�	�
��� �	 �� �
������ 	��	 	�� ������� ��
	�

� � ��	��	�� ���
����	��	
����	

��� ���� ���� ����� �
��
	
�����	�
�� ��	�
 '	��� ����� 	��
����	

���� ��� ���� ��
�
�

��� ����� ���	���� 	
�����	�
��(� -����� �

 ���� ������
��	� �� �	�
�	�
��
 ��� �
� ��
�	�
�� ��	� � 	����	��� ��	�

	��� 	�� �
�����
�� �
� ��
�	�
� ��� �

% �� 	��
����	

���
��� ���� ������� 	
 	�� �

���
����� ��	�
�� �� �� ��
���� � ��	�
 �
� ��
�	�
�� 	�� ���
����	���� '��� 	��� 	��
�

(��� ����
��
�����

4. CASE STUDIES
+� �������
�
 	��������� 	
 ��	��	 ���
����	��	
����	

�
���� 	
 	�� �
�	��
� �
������
� 	��
��� �
�
�� �

���	�
��
�� ��� ��
���� +� �
��� �� �������	�� �

 �

��
��
	
�����	�
�� �� ��
�� ��� ����� �� ��
���� �

 ��
�� 	�

�
	���� �������	�� �
� ��
����	

�� ��	�
�� �� ���������� �
�
	� ���� ����
����	

�� �� ��	�
 	
�����	�
�� � ��� 	�
��
�
� ��	�
�� �� ������� �������� �

 ��
��� 	�
�� �������	��
�
� ��	�
�� �� ���������� ��� �
�
 �
� ��	�
�� �� �������
�������� ;
��
� 	���� ��
����	

�� ��	�
�� ���� ���� ���
��	�� ��	�
� �� 	�� �
��
���� ��
��
���� �� ������� �
��
�
	������� 	
�����	�
�� �� �

� ��	����

4.1 Unrefactored Methods in Subclasses
+� �
��� �� �������
� 	�� ���������� 	��� �� �
�����	�
�
9&5
� ��
��, 3� ����	�
��� ��
���	�
 ��� ���� ����� 	
 	��
��	�
� $���%�
�� �	����
� 	�� ��	�
���� ��$$�� �	���"

%��
����� ���� ��	�
���� �� ��������	�� �� 	�
 �������,
��$$�� �	�����	�
�� ��� &���
'��
���	���$$�� �	���"
�	������ ����� 	���� ������� ��
��� ���� ���� ����	�� ���
�

������ 	
 ����
� 	��	 	��� ��� �� �
������� ��	�
��	�
������
��� &���
'��
���	���$$�� �	����	����� ��� ����
���	����� ����	��� .�� �
�	� ��	�
 	��
	��
 ����� ��� ����

����	

��� 	

� ���
���� �	 	
 �� �
������ ������

3��
 �� ��
�� �� �
��� � ���
�� ������� ���
� 	�� ������

��
� ���� 	
 ���� �
	���� 	���
 ���	�%� ��� �

��	�� �	
�
�� 	
�����	�
�� ��	�
, �� �
�����	�
� 6#26 � �����
��
 ���
����� � �

���� ��
���	�
 	
 	�� ��	�
� 	��'�!���	�����
�� 	�� ����� (�$	��
'�!���	������ .�� ��� ��	�
� �� 	�� �
��
�
���� 	
�����	�
�� 	�� �������� (����)'�!���	����� ���
���� ����	�� ���

������� ;
	�� 	��	 �� 	��� ������� 	��
����
����� �� �
	 �� ��	�
����� ���� ������ ���� 	�� ���

��	
�
� ��
�	�
� ��� ���	��	������ �

��	 ��� ��� �
	 �

����
�
�����
 �

��

31

������ �� ��� �	�	����� ���	
������� �� ��	��	
���� ���� �� ��
����

)�	 �� ���
 �
��� 	
�����	�
�� ���
� 	�� ��
����	

�� �����
��� �
	 ���� ����	�� ��	�
� �

 �������� �� �
�����	�
�
62&4
� ��
��� 	�� ��	�
� �	����'	������ ��� ���� ���
	����� ��
�� ��
���	�
 �� ��8�
��	 �������
� 	�� ���%���
����	�	�����	�������������� ��	 �
	 �� 	�� ����� (��*"
+	����
��
%��
����� ��� �
�����	��� �
����	� �� 	��
�
�
�� �
��
� 	�� ����� 	��� 	��	 	�� ����� �� � 	��	��� �����
	��	 ��
��� ��
��
��� �
�� 	����

���� ��
�� 	��	
�
 ���

���
��� ��� �������	� ��	�
��
	��	 ��� �� ������ 3�	������ 	���� ��	�
�� ��
��� �� ���
��	�� �� � �����
��
�

����
� 6 ��
�� � �

� �
����� ������� �

 � ����� ���
��
���	��	 ��� �	
	����

����	

��� �� ��
���� �� 	��� �����
�����	�
� 	�� ���
���� ������� ��� 	�� ����
�	����
���	�
��
��	���� 	��� �
� ��������� �� 	�� �
� �
	�	�
��
����	

��
��	�
�� �
� ��
%�� �
��� '� 	

�	�� ����
���� 	��
����	

�
���(��� �������
����	

���� �
� �
�

��
��� �� �
������
	�
� 6>&6 	�� ��	�
� 	�
����,�
� 	�� ��	�
���� #�-���
"
��
�����
�� ��� ���� ��	����� ��
�� ��
���	�

� 	���
�
����./� ���� ��� ��
���	�
 �

����� 	��

��� ����� 	��
��
�
� 	��	 ��
��� �� ��	�

����
��� '���� ?�����@(� =
��
������	��� 	�� ����� �	����
�����
�� 	��	 ��������	� 	���
��	�
���� ��� ���� ����	��� 	

� A

�
��
� 	�

� 	�
�� ����
�������
� �	����
�����
�� ���� ���
 ���� �������, ������"

#�	�� ��� &(� #�	��� 0�
�
�������� 	�� ����� ������
���"
��
�����
�� 	��	 �
	� ���������� #�-���
��
�����
�� ���
�	 	�� ���� 	��� ������� �	����
�����
�� ��� �
	 ����
����	��� 3������ 	��� ����� ��� �� ������������ �
������
������� 	�� 	�
����,� ��	�
� �� ������ �������
� 	��
��	�
���� �� ����
�	�� �

� 	�� ����
����� �	����
�����
���

�
 ��	 � �����
 ����
�	������
� ���	 �������� �� 	�� ���
��
���� 	
�����	�
� �� ����%��
�	 	�� �
�
�� �
��
� 	��
���
���� ������� �	 	�� 	���
� 	�� 	
�����	�
�� +� �
���
	��	 �� 	�� ��
����	

�� ����� ������
�����
�����
�� 	��
����	�
����� ��	�
� ������
�	�
�� 	�� ����� ?B@ �

 ?���
	�

����@� ���� �� ����	�� ���	 	�� ����	�� ��	�
� 	��	 ��
����
�	�� �

� �	����
�����
�� �
��� ����� 	��
� ��� �

���� 	
 ����	� 	�� ��	�
� �� 	��� ����� ������� 	�� ����
�
�	��
�� �
�� 	��
���	 	���� ��� 	�� ��
����	

��
�� �
��
	�� ���� ��� ��� �� ���� �� ���
����	�
��

4.2 Unrefactored Methods in Sibling Classes
3� �� ���� ��������� �� 0��	�
� 1 �� �
�� ����� �	 �� ���

�������
� 	
 ����	� ������� ������� ��	�
��� 	�� ����
�����
�
� ����� ��� �
	 ����
����	

��� �� ��
�� �� �
��� 	�
�� ���
�� ��
��� �
�
 	
�����	�
�� ���
� � ����� ��� ����
����	

��

� ��	�
� ����� ��	 	�� �������� ���� �
	 ���� ����	���
;
��
� 	���� ���� ���� ����	�� ��	�
 �� 	�� ���	

��

32

3� �������� �
 �
	 ����
�	 �

� ����
	��
� 	��� ��� ������
���	 �
����	��� ��8�
��	 ��	�
��� ����� ����� 	�� �
���
	
�����	�
�� �
�
��� �������	�� ��� ���� 	
 �� ����%�� ��
� �����
��
�

�

 ������� �� �
�����	�
� 1#2B
� ��
���� � ��
���	�

��� ���� ����� 	
 	�� ��	�
� 	��'	�#���� �� 	�� �����
+��$���%�	���� ���� ����� �� � ��������
� �	����
�����
��
����� ��� 	�

	��
 ����������, ��
��
0�%#�	��� ��� ���"

���0�%#�	���� �� 	���� ������� 	�� ����
����
����	

���
��� �
	 ���� ��
�

����

5. RELATED WORK
C���
�� ���

��	�
�
�
����	

��� �
� �
����	�� �� �
���
D�
�

% "#$� E�����
 �	� �� �
����	�� �
�� ��	
��������� ���
�
��	��� "5$ 	
 ��	��	
����	

���� �� ���������� �
� ��
�	�
��

� �
�	��
� ���	���� ���� �
���
��� �
����	
�	��
� �
���
���	�� ����	�� ��� ��
���
� ��	�
�� ��� ��
�

��� ����
�	�����
� 	�
��
��� �
�
�� �

���	�� �� �
�	
��	 	

�

�

%� 	��� ��� �
	 ������ 	�� �
�	��
� �
����� 	
 ��	 �������
���� �
� ��
�	�
��� 0
�	��
� ��	
��� ��%� 	�� A�=��� �
��
�����	� "2$ ��� ���
 ���� ���	� ��
�	 ��� ��� ������� 	��	
�
� ��%��� 	
 �
�	��� �

�� .�	
��� ��� +���%�
 "4$ ����
� ��8�
��	 ���

��� 	
 ��	��	 ��� �
����	 �
������ �

�����
�� � �
�	��
�� ���� ����� ��� ��	������ ��

��
 	
 �
����	
����	��

�� ����

6. CONCLUSIONS AND OUTLOOK
�� 	��� ����
 �� ��	

����� �� ���

��� 	

��
��	
��	

����	

����
� ��	�
� ����� �

� �
�	��
� �
������� ����
�� ��������� �
� 	
 ����% �� 	��� ���� ���� �
����	��	��
�������� ��� ���� �	�����
� 	��
��� �
�
�� �

���	� ��
��

��� ��
��� ��
� 	��	
�
 ���

��� ���
�� 	
 ��	��	 ����
����	�� �

 ���
����	�
����	

����� �� 	�
 ������ 	�� ����
����	�� ���� ���� ������� ��	�
 ��� �
 �	 	�
���
�	 	��	
	��� ���� ����
����� �������� �� 	�

	��
 ������ 	��� ����
���
 ���� �������� ��	 ���� �
	 ���� �������� ������� 	���
�
���
��� �������� ����� ���� �
 �
���
 ���� ����
 ��	���
�����
����	� ���
�������� ����� ���� 	
 �� ������	�� ��
	�� �����
��
 	
 ������ ���	��
 	��
����	

���� �
�
�����
�������

 �
	�

�

 ��	�
� �

% �� ���� 	
 �����	���	� �
� 	

��
��	
��	
�

� �
����� 	����
�
����	

���� �

� �
�	��
� �
�������
A

�
��
� 	��
� �
� ����	�
���
����	

���� 	��	 �
��� ��
����%�� �

 �
����	���� ��	�
�	 ��	�
���
�
 ��

��	 �
����
	��	�
� ��	 �
� �
	 ��	 ��������	��, �

 ������� 	�� ���
�
	�� ���
�	��
����	

��� 	��	 �
��	�� �� ��	�
���� �
�	����
��� 	�� ��	�
��
� � ����� ��� ��	� 	�� ����� ��������	 	���
��	�
���� �
��� �� ��	��	�� �� �
���
��� 	�� ��	�
� �����
�
�	�
��
� ��� ��	�
����� 	
 	�� ��	�
��
� ����	��� ��������
�� ����	�
� 	
 	���� 	�� !���
	��"� ����
����	

��� 	��	
������� 	�� 	���
� ��
����	 	
 � �

� ����
�� 	��� �
���
��
��
������ ����� 	�� ����� ���
�
����

3�
�
 ���

��� ��� �� ���� 	
 ����

	 �����
��
� �� 	���

����� �

% 	
 �
����	 �

� ��
����	

��� 	��%�� �	 �
��� ��
����
���� 	
 ��	
�
 ���

�	���
�� �� 	�� ���%�

��� �����
	�� �����
��
 �� �

%���� �
 ������� 	��� �� �
� ��������
	
 ��	��
�	� �	 ��	
 � �����
����	 ����

����	 ��%� ��������

��
	��
�

�� �� ���� 	
 ��	���
�
 ���� �	��� 	
 �

� �
�	�
��
� �

���	�
� ��8�
��	 ����� �
������	�� ��� ����

7. REFERENCES
"6$ F� =���
����	� G�
��
� A��������	 ��	� =G0�

�

����111��
����������������	��	���

"#$ A� �
���
� H�)��%� I�)
��	� +� .���%�� ���
E� !
��
	�� ���	���
���# ��
����� ��� $����� �� ���
������ %���� 3����
��+������ #BB6�

"1$ =� CJ

� ��� F� +��K��
��
� E�	��	��� ��� G����������
!����	

���� �

� 0
�	��
� 3
������� �� �
��������� ��
��� &'�� ���
�	����	� (�
)���� �� �
��
	� %���
��
������� * (�% +,,-.� 0	� <
���� A���
�
�� 7�0�� #BB4�

"2$ �� I� A�=���� � %���������
�	��
�� �/// �
������
	�
��
� 0
�	��
� /������
���� G
�� #� 6>&5�

"4$ �� I� .�	
��� ��� /� I� +���%�
� 3 �

� �

 A�����
E����	��
��%��� 0��	��� 	
 F
����	 ����	�F

�� ������
�� �
��/ ���
�	����	� (�
)���� ��
����� 0����	
�
��������
��� *
0� +,,1.� /�����
��� 0�
	����� 7�H��
#BB2�

"5$.� ;� 0�
�� E�����
� 0	L������ E������� ������� !�����
	

���� ��� =����� A�	
���� �� �
��������� �� �%
 %���
��
���� �� 2������2
������ �
��
	�����3 0������3 4	��
��	���3 	�� ������	����� *22�04� +,,,.� A������
����
A�����
	�� 7�0�� #BBB�

"&$ ��� /������ �
����	�
�� /������ -
�������
�

����111�������������

"9$ �� M����
���� ��� F� +��K��
��
� F
��

������� =G0
E�	� �

 �����C
����� 3�������� �� �
��/ ���
�	����	�
(�
)���� ��
����� 0����	
� ��������
��� *
0� +,,1.�
/�����
��� 0�
	����� 7�H�� #BB2�

33

34

 Education

35

Software Repository Mining with Marmoset: An Automated
Programming Project Snapshot and Testing System

Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh
Dept. of Computer Science

University of Maryland
College Park, MD, 20742 USA

{jspacco,strecker,daveho,pugh}@cs.umd.edu

ABSTRACT
Most computer science educators hold strong opinions about
the “right” approach to teaching introductory level pro-
gramming. Unfortunately, we have comparatively little hard
evidence about the effectiveness of these various approaches
because we generally lack the infrastructure to obtain suffi-
ciently detailed data about novices’ programming habits.

To gain insight into students’ programming habits, we de-
veloped Marmoset, a project snapshot and submission sys-
tem. Like existing project submission systems, Marmoset
allows students to submit versions of their projects to a cen-
tral server, which automatically tests them and records the
results. Unlike existing systems, Marmoset also collects fine-
grained code snapshots as students work on projects: each
time a student saves her work, it is automatically committed
to a CVS repository.

We believe the data collected by Marmoset will be a rich
source of insight about learning to program and software
evolution in general. To validate the effectiveness of our
tool, we performed an experiment which found a statistically
significant correlation between warnings reported by a static
analysis tool and failed unit tests.

To make fine-grained code evolution data more useful,
we present a data schema which allows a variety of useful
queries to be more easily formulated and answered.

1. INTRODUCTION
While most computer science educators hold strong opin-

ions about the “right” way to teach introductory level pro-
gramming, there is comparatively little hard evidence to
support these opinions. The lack of evidence is especially
frustrating considering the fundamental importance to our
discipline of teaching students to program. We believe that
the lack of evidence is at least partly attributable to a lack
of suitable infrastructure to collect quantitative data about
students’ programming habits.

To collect the desired data, we have developed Marmoset,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05 St. Louis, MO USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

an automated project snapshot, submission, and testing sys-
tem. Like many other project submission and testing sys-
tems ([11, 6, 7, 4]), Marmoset allows students to submit
versions of their work on course projects and to receive au-
tomatic feedback on the extent to which submissions meet
the grading criteria for the project. The grading criteria are
represented by JUnit [8] tests, which are automatically run
against each version of the project submitted by the student.
In addition to JUnit tests, Marmoset also supports running
the student’s code through static analysis tools such as bug
finders or style checkers. Currently the only supported static
checker is FindBugs [5]; we plan on trying with other static
analysis tools such as PMD [10] and CheckStyle [1] in the
future.

A novel feature of Marmoset is that in addition to collect-
ing submissions explicitly submitted by students, an Eclipse
[3] plugin called the Course Project Manager [13] automati-
cally captures snapshots of a student’s code to the student’s
CVS [2] repository each time she saves her files. These inter-
mediate snapshots provide a detailed view of the evolution
of student projects, and constitute the raw data we used as
the basis for the experiments described in this paper.

Students can log in to the SubmitServer to view the results
of the unit tests and examine any warnings produced by
static checkers. The test results and static analysis warnings
are divided into four categories:

• Public Tests: The source code for the public tests is
made available to students upon their initial checkout
of a project, and the results of public tests for submit-
ted projects are always visible to students. (Students
should already know these results since they can run
these tests themselves).

• Release Tests: Release tests are additional unit tests
whose source code is not revealed to students. The out-
comes of release tests are only displayed to students if
they have passed all of the public tests. Rather than
allowing students unlimited access to release test re-
sults (as we do with public tests results), we allow lim-
ited access as follows. Viewing release tests costs one
“release token”. Students receive three release tokens
for each project and these tokens regenerate every 24
hours. Viewing release results allows the student to see
the number of release tests passed and failed as well as
the names of the first two tests failed. For example,
for a project requiring the evaluation of various poker
hands, a student may discover that they have passed

36

6 out of 12 release tests and that the first two tests
failed were testThreeOfAKind and testFullHouse. We
have tried to make the release test names descriptive
enough to give the student some information about
what part of their submission was deficient, but vague
enough to make the students think seriously about how
to go about fixing the problem.

• Secret Tests: Like release tests, the code for secret tests
is also kept private. Unlike release tests, the results of
secret tests are never displayed to the students. These
are equivalent to the private or secondary tests many
instructors use for grading purposes. Although our
framework supports them, the courses on which we
report in this paper did not use any secret tests.

• Static Checker Warnings: We have configured Mar-
moset to run FindBugs on every submission and make
the warnings visible to students. FindBugs warnings
are provided solely to help students debug their code
and to help us tune FindBugs; the results of FindBugs
are not used for grading.

When compared to previous work, we feel Marmoset im-
proves data collection in two major ways. First, by using
the Course Project Manager Eclipse plugin, we can gather
frequent snapshots of student code automatically and unob-
trusively. Prior work on analyzing student version control
data [9] focused on data that required the students to man-
ually commit their code. One observation made by Liu et.
al. is that students often don’t use version control systems
in a consistent manner. The Course Project Manager plugin
has no such limitation.

Second, by providing the same testing framework for both
development and grading, we can quantify the correctness
of any snapshot along the development timeline of a project.
This allows us to perform statistical analyses of the devel-
opment history of each student.

2. STUDENT SNAPSHOT DATA
Of the 102 students in the University of Maryland CMSC

132 Fall 2004 course,73 consented to be part of an IRB ap-
proved experimental study of how students learn to develop
software.Other than signing a consent form and filling out
an optional online survey about demographic data and prior
programming experience, students participating in the ex-
periment did not experience the course any differently than
other students in the course, as the data collected for this
research is routinely used during the semester to provide
students with regular backups, automated testing and a dis-
tributed file system.From the 73 students who consented to
participate in the study, we extracted from their CVS repos-
itories over 51,502 snapshots, of which about 41,333 were
compilable. Of the compilable snapshots, 33,015 compiled
to a set of classfiles with a unique MD5 sum.

That 20% of the snapshots did not compile is not sur-
prising, as snapshots are triggered by saving. In fact, we
were pleasantly surprised that so many of our snapshots did
compile.

We tested each unique snapshot on the full suite of unit
tests written for that project. In addition, we checked each
unique snapshot with the static bug finder FindBugs [5] and
stored the results in the database. We also computed the
CVS diff of the source of each unique submission with the

students 73
projects 8
student projects 569
snapshots 51,502

compilable 41,333
unique 33,015
total test outcomes 505,423

not implemented 67,650
exception thrown 86,947
assertion failed 115,378
passed 235,448

Table 1: Overall numbers for project snapshots and
test outcomes

Exception
yes no

Warning Warning
Problem yes no yes no

ClassCast 596 1,541 2,009 28,869
StackOverflow 627 792 255 29,437

Null Pointer 1,116 5,014 1,389 25,496

Table 2: Correlation between selected warnings and
Exceptions

source of the preceding unique submission, and stored the
total number of lines added or changed as well as the net
change to the size of the files (we do not track deletes ex-
plicitly, though deletes do show up indirectly as net changes
to the size of the source files).

We have performed a number of different kinds of analy-
sis on the data, and continue to generate additional results.
Unfortunately, space only allows us to present a small win-
dow into our research.

We have looked both at the changes between successive
snapshots by an individual student, and at the features of
each snapshot in isolation. When looking at changes be-
tween successive snapshots, we can examine the change in
warnings between successive versions and whether there is
any corresponding change in the number of unit test faults
between versions. We can also look at the size of changes,
and even manually examining the differences between ver-
sions where our defect warnings do not seem to correspond
to the difference in actual faults (e.g., if a one line change
caused a program to stop throwing NullPointerExceptions,
but no change occurred in the number of defect warnings
generated, is there something missing in our suite of defect
detection tools?). While we have some results from this
analysis, the complexity of those results makes them hard
to present in the space available.

3. CORRELATION BETWEEN WARNINGS
AND EXCEPTIONS

In this section, we show the correlation between selected
bug detectors and the exceptions that would likely corre-
spond to the faults identified by these detectors. We look
at ClassCastExceptions, StackOverflowError and NullPoint-
erExceptions. Before starting work on finding bugs in stu-
dent code, we didn’t have any bug detectors for ClassCas-

37

tExceptions or StackOverflowErrors. Based on our experi-
ence during class and leading up to this paper, we wrote
some detectors for each. Table 2 shows the correlation be-
tween exceptions and the corresponding bug detectors in
version 0.8.7 of FindBugs.

Note that cases where we warn about a possible infinite
recursive loop, but do not experience a stack overflow ex-
ception during a test run, might not indicate a false positive
warning. Instead, it is possible that the error signaled by
the warning is, in fact, present but the presence of the error
is masked during execution by the presence of other errors.

ClassCastExceptions typically arise in student code be-
cause of:

• An incorrect cast out of a collection. We believe that
many of these would be caught by uses of parameter-
ized collections.

• A collection is downcast to more specific class

(Set)Map.values()

• A cast to or from an interface that will not succeed
in practice, but the compiler cannot rule out since it
can’t assume new classes will not be introduced. In
the example below, although WebPage does not im-
plement Map, we cannot rule out the possibility that
a new class could be written that extends WebPage
and implements Map:

public void crawl(WebPage w) {

Map crawlMap = (Map)w;

• A cast where static analysis dooms the cast, even if
additional classes are written, but the programmer has
gone to some length to confuse the compiler:

public WebPage(URL u) {

this.webpage = (WebPage)((Object)u);...+

We have written detectors to check for the last three casts.
Surprising, all three (even the last one) also identify prob-
lems in production code; an instance of the the last error
occurs in the Apache Xalan library.

Many of the StackOverflowErrors are caused by code that
obviously implements infinite recursive loops, such as:

WebSpider() {

WebSpider w = new WebSpider(); }

We wrote an initial detector based on experience during the
fall semester, and that detector also found a number of in-
finite recursive loops in production code such as Sun’s JDK
1.5.0 and Sun’s NetBeans IDE. From examination of the re-
search data collected from the course, we refined the infinite
loop detector, to find more cases. This allowed us to find an
additional infinite recursive loop in Sun’s JDK. We found
far more infinite recursive loops that we would have ever
anticipated (17 of them in code shipped in JBoss 4.0.1sp1,
10 in code shipped with Sun’s J2EE appserver).

For the NullPointerExceptions, we report the detectors
that perform dataflow analysis to report possible NullPoint-
erExceptions and a separate detector that looks for reference
fields that are never written to but are read and deferenced.

4. SCHEMA FOR REPRESENTING PRO-
GRAM EVOLUTION

Our current analysis is somewhat limited, in that we can
only easily measure individual snapshots, or changes be-
tween successive versions. We can’t easily track, for ex-
ample, which changes are later modified.

We want to be able to integrate code versions, test results,
code coverage from each test run, and warnings generated
by static analysis tools. In particular, we want to be able to
ask questions such as:

• Which methods were modified during the period 6pm-
9pm?

• During the period 6pm-9pm, which methods had more
than 30 line modifications or deletions?

• Of the changes that modified a strcpy call into a strncpy
call, how frequently was the line containing the strncpy
call, or some line no more than 5 lines before it, mod-
ified in a later version?

• For each warning generated by a static analysis tool,
which versions contain that warning?

• Which warnings are fixed shortly after they are pre-
sented to students, and which are ignored (and persist
across multiple submissions)?

None of these questions can be easily asked using CVS
based representations. We developed a schema/abstraction
for representing program histories that make answering these
questions much easier. A diagram of the schema is shown in
Figure 1. Each entity/class is shown as a box, with arrows to
other entities it has references to. This schema can be rep-
resented in a relational database, and most of the queries
we want to ask can be directly formulated as SQL queries.

The schema we have developed is based on recognizing
unique lines of a file. For example, we might determine
that a particular line, with a unique key of 12638 and the
text “ i++; ”, first occurs on line 25 of version 3 of the
file “Foo.java”, occurs on line 27 in version 4 (because two
lines were inserted before it), occurs on line 20 in version 5
(because 7 lines above it were deleted in going from version
4 to version 5) and that version 5 is the last version unique
line #12638 occurs.

It is important to understand that unique lines are not
based on textual equality. Other occurrences of “ i++; ”
in the same file or other files would be different unique lines.
If a line containing “ i++; ” is reinserted in version 11,
that is also a different unique line.

So in our database, we have a table that gives, for each line
number of each file version, the primary key of the unique
line that occurs at that line number.

4.1 Tracking Lines and Equivalence Classes
As given, two lines are considered identical only if they

are textually identical: changing a comment or indentation
makes it a different unique line. While we sometimes want
to track changes at this granularity, we often want to track
lines across versions as their comments are changed or even
as small modifications are made.

We handle this by defining equivalence classes over unique
lines of text. At the moment, we support the following
equivalence relations:

38

UniqueLine
text
firstFileVersion
lastFileVersion
commentEquivClass
smallEditEquivClass

UniqueLineLocation
uniqueLine
fileVersion
lineNumber

FileVersion
file
versionNumber
timeStamp

Snapshot
timeStamp

SnapshotContents
snapShot
fileVersion

TestRun
snapShot
testCase

TestCase
testName

CodeCoverage
testRun
uniqueLineLocation

MethodLocation
method
fileVersion
firstLineNumber
lastLineNumber

Method
methodName

FindBugsWarnings
warning
uniqueLineLocation

CommentEquivClass
firstFileVersion
lastFileVersion

SmallEditEquivClass
firstFileVersion
lastFileVersion

Exception
testRun
exceptionClass
exceptionMessage

StackTraceEntry
exception
depth
uniqueLineLocation

Figure 1: Schema for representing program evolution

• Identity: The lines are exactly identical.

• Ignore-Whitespace: When whitespace is ignored, the
lines are identical.

• Ignore-SmallEdits: When whitespace is ignored, the
lines are almost equal; their edit distance is small.

• Ignore-Comments: When whitespace and comments
are ignored, the edit distance between the lines is small.

These equivalence relations are ordered from strictest to
most relaxed. Thus, the lines ” a = b + c.foo(); ” and
“a = b + x.foo(); /* Fixed bug */ “ belong to the same
Ignore-Comments and Ignore-SmallEdits equivalence classes,
but not to the same Ignore-Whitespace and Identity equiva-
lence classes. The equivalence classes are used to track indi-
vidual lines as they evolve, not to identify textually similar
lines of text.

There are various rules associated with identifying these
unique lines and equivalence classes in a file:

• No crossings: If a line belonging to equivalence class
X occurs before a line belonging to equivalence class
Y in version 5 of a file, then in all versions in which
lines belonging to equivalence classes X and Y occur,
the line belonging to equivalence class X must occur
before the line belonging to equivalence class Y.

• Unique representatives: In each version, only one line
may belong to any given equivalence class.

• Nested equivalence classes: If two lines are equiva-
lent under one equivalence relation, then they must
be equivalent under all more relaxed relations.

The no crossing rule prevents us from recognizing cut-and-
paste operations, in which a block of code is moved from one
location to another. Recognizing and representing cut-and-
paste (and other refactoring operations) is a tricky issue
that we may try to tackle at some future point. However,
handling that issue well would also mean handling other
tricky issues, such as code duplication.

To calculate which lines belong to the same equivalence
class, we have implemented a variation of the “diff” com-
mand to discover groups of mismatched lines, or deltas, be-
tween two versions. Our diff algorithm recursively computes
deltas under increasingly relaxed equivalence relations. First,
we find all deltas under the Identity relation, which is the
strictest. For each delta, we apply the algorithm recur-
sively, using the next strictest equivalence relation to com-
pare lines. The final result is a “diff” of the versions for each
equivalence relation. Because the recursive step of the algo-
rithm only considers those deltas computed under stricter
equivalence relations, the algorithm respects the three rules
above.

4.2 Methods
Since we will sometimes wish to track which methods are

modified by a change or covered by a test case, we also store,
for each file version, the first and last line number associated
with a method.

4.3 Other information
We represent a number of additional forms of information

in our database. A snapshot consists of a set of file versions
taken at some moment in time. Usually, a snapshot repre-
sents a compilable, runnable and testable snapshot of the

39

system.
Associated with a snapshot we can have test results and

code coverage results. Typically, each project will have a
dozen or more unit test cases. We run all of the unit tests
on each snapshot, and also record which lines are covered
by each test case. If a test case terminates by throwing an
exception, we record the exception and stack trace in the
database. The information we have linking lines in different
versions of a file allows us to easily compare code coverage
in different versions, or correlate code coverage with static
analysis warnings or exceptions generated during test cases.

5. RELATED WORK
Many systems exist to automatically collect and test stu-

dent submissions: some examples are [11, 6, 7, 4]. Our con-
tribution is to control students’ access to information about
test results in a way that provides incentives to adopt good
programming habits.

In [9], Liu et. al. study CVS histories of students working
on a team project to better understand both the behavior
of individual students and team interactions. They found
that both good and bad coding practices had characteristic
ways of manifesting in the CVS history. Our goals for the
data we collect with our automatic code snapshot system
are similar, although we consider individual students rather
than teams. Our system has the advantage of capturing
changes at a finer granularity: file modification, rather than
explicit commit.

In [12], Schneider et al. advocate using a “shadow repos-
itory” to study a developer’s fine-grained local interaction
history in addition to milestone commits. This approach
to collecting and studying snapshots is similar to our work
with Marmoset. The principal difference is that we are not
focused on large software projects with multiple developers,
and so we can use a standard version control system such as
CVS to store the local interactions.

In [4], Edwards presents a strong case for making unit
testing a fundamental part of the Computer Science cur-
riculum. In particular, he advocates requiring students to
develop their own test cases for projects, using project so-
lutions written by instructors (possibly containing known
defects) to test the student tests. This idea could easily be
incorporated into Marmoset.

6. ACKNOWLEDGMENTS
The second author is supported in part by a fellowship

from the National Physical Science Consortium and stipend
support from the National Security Agency.

7. REFERENCES
[1] CheckStyle. http://checkstyle.sourceforge.net, 2005.

[2] CVS. http://www.cvshome.org, 2004.

[3] Eclipse.org main page. http://www.eclipse.org, 2004.

[4] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Companion
of the 2003 ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Anaheim, CA, October 2003.

[5] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In
Companion of the 19th ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, Vancouver, BC, October 2004.

[6] D. Jackson and M. Usher. Grading student programs
using ASSYST. In Proceedings of the 1997 SIGCSE
Technical Symposium on Computer Science Education,
pages 335–339. ACM Press, 1997.

[7] E. L. Jones. Grading student programs - a software
testing approach. In Proceedings of the fourteenth
annual consortium on Small Colleges Southeastern
conference, pages 185–192. The Consortium for
Computing in Small Colleges, 2000.

[8] JUnit, testing resources for extreme programming.
http://junit.org, 2004.

[9] Y. Liu, E. Stroulia, K. Wong, and D. German. Using
CVS historical information to understand how
students develop software. In Proceedings of the
International Workshop on Mining Software
Repositories, Edinburgh, Scotland, May 2004.

[10] PMD. http://pmd.sourceforge.net, 2005.

[11] K. A. Reek. A software infrastructure to support
introductory computer science courses. In Proceedings
of the 1996 SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, PA,
February 1996.

[12] K. A. Schneider, C. Gutwin, R. Penner, and
D. Paquette. Mining a software developer’s local
interaction history. In Proceedings of the International
Workshop on Mining Software Repositories,
Edinburgh, Scotland, May 2004.

[13] J. Spacco, D. Hovemeyer, and W. Pugh. An
eclipse-based course project snapshot and submission
system. In 3rd Eclipse Technology Exchange Workshop
(eTX), Vancouver, BC, October 24, 2004.

40

Mining Student CVS Repositories for Performance
Indicators

Keir Mierle
Dept. Electrical & Computer Engineering

University of Toronto

keir@cs.utoronto.ca

Kevin Laven, Sam Roweis, Greg Wilson
Dept. Computer Science

University of Toronto

{klaven,roweis,gvwilson}@cs.utoronto.ca
ABSTRACT
Over 200 CVS repositories representing the assignments of stu-
dents in a second year undergraduate computer science course have
been assembled. This unique data set represents many individuals
working separately on identical projects, presenting the opportunity
to evaluate the effects of the work habits captured by CVS on per-
formance. This paper outlines our experiences mining and analyz-
ing these repositories. We extracted various quantitativemeasures
of student behaviour and code quality, and attempted to correlate
these features with grades. Despite examining 166 features, we find
that grade performance cannot be accurately predicted; certainly no
predictors stronger than simple lines-of-code were found.

1. INTRODUCTION
Version control repositories contain a wealth of detailed infor-

mation about the evolution of a codebase. In this paper, we out-
line our experiences analyzing data from a large collectionof CVS
repositories created by many students working on a small setof as-
signments in a second year undergraduate computer science course
at the University of Toronto.

We believe our data set is rather unique. It contains hundreds
of completely independent repositories, one for each student. Each
student is implementing the same thing at the same time. Previous
work analyzing logs from version control systems has tendedto
focus on a single large repository involving many coders working
on different parts of the same software project[5, 4].

1.1 Goals
The broad goal of our research programme was to extract in-

formation about student behaviour and code from version control
repositories, in order to find statistical patterns or predictors of per-
formance. It was our hope that these results can be used to identify
and assist undergraduate students having difficulties. This paper
outlines our attempts.

We attempted to identify work habits captured in the CVS repos-
itory that are indicative of strong or poor performance. We investi-
gated such hypotheses asstudents who start assignments early tend
to do well, andstudents who submit assignments close to (or after)
the deadline tend to do poorly. Quantitatively confirming the ef-
fectiveness of good work habits could help encourage students to
follow them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

In addition, we attempted to identify features of the code itself
that are indicative of performance. As with work habits, confirming
their effects on performance could be used to encourage students to
write good code.

Finally, we were interested in finding early indicators of students
who may be struggling in order to provide timely assitance. We
hope to acheive this by finding a way to predict low grades (final
course grades in the bottom third of the class) based on statistics
extracted from a student’s CVS repository.

1.2 CVS Background
CVS, the Concurrent Versions System[1], is a source code man-

agement system. It provides a facility for storing past and present
versions of a project’s codebase, as well as automating manyas-
pects of writing software as a team.

A CVS repository consists of two parts: administrative filesstored
in a central location (known asCVSROOT), and RCS files associ-
ated with each file stored in the repository. The RCS files store
revision histories for the individual files comprising the project.

This storage scheme is a bit complex to parse. To further com-
plicate matters, in CVS there are two separate and occasionally dis-
joint records of activity in a repository: theCVSROOT/history
file and the individual RCS files (ending in,v). File histories are
implicitly stored in theRCSfiles which record modifications, addi-
tions, and scheduled deletions. Thehistory file tracks (almost)
all interactions between a user and a repository, includingcheck-
outs, updates, and conflict resolutions, as well as those listed above.
Unfortunately, the history file does not record the initial importing
(addition to the repository) of a project.

2. DATA PREPARATION
A combination of Python, ViewCVS[3], and MySQL helped mas-

sage the data into a more usable form. Our original code for ex-
tracting data from CVS repositories is based on ViewCVS, which
includes a fast RCS parser written in C++. This code, including our
modifications to the ViewCVS parser, is freely available atwww.
cs.utoronto.ca/˜keir/slurp-1.0.0.tar.gz . The code
parses every file in a repository and loads the transactions into a
MySQL database for convienient access.

2.1 Transaction Clumping
One problem with CVS is the grouping of transactions. CVS

does not keep any record of which operations were executed as
part of a single client command. In order to reconstruct the use of
the CVS repository, these must be re-grouped based on temporal
proximity and other details of the transactions.

We used a variant of the sliding window approach[6] to clump
groups of transactions into single events. In this approach, any set

41

of transactions with the same user and comment string, in which
neighbouring transactions occur withinτ seconds of each other are
grouped into a single event. For our data, we found thatτ = 50
worked well. While this disagrees with the results in [6], this is not
unexpected, as our repositories are very small, with most students
working on the local network, leading to much shorter operation
times.

Two modifications were made to the sliding window approach to
improve results. First, it was noted that some CVS clients allow the
user to enter a different comment for each file involved in a single
event. To account for this, all transactions by the same userthat
occur at the same second were grouped together. Second, it was
noted that a single file cannot have multiple modifications within
one event. After the clumping was complete, any event which con-
tained the same file more than once was split into separate events,
decreasing the amount of over-clumping.

2.2 Feature Extraction
The quantitative and visual analysis techniques we intended to

use require numerical data. Accordingly, we converted the known
data about each student into a set of numerical summary statistics
(called features), to be evaluated as predictors of student perfor-
mance. Our system extracts 166 unique features from the trans-
action histories, log comments, and details of the actual code files
from each student. In order to be able to quantitatively compare the
effects of different features, each feature was normalizedto have
zero mean and unit variance across the entire dataset.

Three classes of features were extracted. The first featureswere
calculated from the database of CVS data. These largely represent
student behaviour and work habits. They include things likethe
average number of revisions per file, number of local CVS oper-
ations, number of update transactions, how close to the deadline
they submit the assignment, and more.

The second group of features came from parsing the Python
and Java code. For these features, each student’s repository was
checked out and examined. Two simple parsers were written (in
Python) to extract features directly from the Python and Java code,
such as the number of while loops, number of comments, and num-
ber of instances of certain formatting habits.

For the final group of features, we used PMD[2] to examine all
Java files. PMD detects many types of higher-level features,partic-
ularly style violations or bad practices. It detects thingslike vari-
able names that don’t follow a naming standard, boolean expres-
sions that can be simplified, empty if statements, asserts without a
message, and a whole slew of others.

In addition to extracting these features, records of student aca-
demic performance were added to the database. Along with grades
for each student, each student was labelled as being in the top, mid-
dle, or bottom third of the class.

3. VISUAL & QUANTITATIVE ANALYSIS
A variety of visual and quantitative analysis techniques were

applied to the data. Visualizations used include views which ag-
gregate statistics across all students and assignments, aswell as
specialized views which allow us to examine the behaviour ofa
single student and/or a single assignment. Quantitative analysis
techniques used include examining the mutual information between
each feature and the student grade, as well as the application of sta-
tistical pattern recognition algorithms for predicting grades from
the features.

The following sections present the results of our analysis in terms
of the three goals of the project: investigating the effectsof work
habit on grades, the effects of code quality on grades, and attempt-

ing to predict performance based on all of the information available.

3.1 Mutual Information for Feature Evalua-
tion

The mutual information between two (discrete) random variables
x andy is defined as the cross-entropy between their joint distribu-
tion and the product of their marginal distributions:

I(x, y) = KL[p(x, y)‖p(x)p(y)] =
X

x,y

p(x, y) log
2

p(x, y)

p(x)p(y)

The mutual information between two random variables is a mea-
sure of their dependence or independence. It is a more stringent
measure than the traditional correlation coefficient, which only mea-
sures average second order statistics but cannot capture complex
higher order dependencies.

For our data, we did not have enough samples to accurately es-
timate the joint density between all the features we investigated.
However, we did have enough data to estimate the mutual infor-
mation between a single feature and student grades. Specifically,
we created a binary random variabley which was 1 if a student
achieved a grade which placed them in the top third of the class and
zero if it placed them in the bottom third of the class. Students in
the middle third were excluded from the estimation procedure. We
then discretized each featuref into K = 20 bins (with equal sized
rangesfk) and computed the mutual information between this dis-
cretized random variable and the binary grade variable as follows:

I(f) =
X

y=0,1

K
X

k=1

p(y)p(f ∈ fk|y) log
2

p(f ∈ fk|y)

p(f ∈ fk)

wherep(f ∈ fk) is the overall observed frequency with which the
feature falls into bink andp(f ∈ fk|y) is the frequency for either
the high or the low grade students.p(y = 1) = p(y = 0) = 0.5
since we select exactly equal numbers of students with high grades
(the top third of the class) and low grades (the bottom third of the
class).

Using these estimates, we can rank the features by how much
information they contain about the course grade. figure 1 gives a
short list of the top features and their estimated mutual information.
The result was quite surprising to us:

Of the 166 features we examined, only 3 had significant correla-
tion with grade. Of these, the most significant was the total number
of lines of code written.

Given the number of student repositories used, only three fea-
tures had statistically significant mutual information with the grade
of the student at thep = 0.05 level: lines of code written by the
student, number of commas followed by spaces1 and total length of
diff text2 (In this caseI = 0.22 bits was the significance cutoff.)
These features are above the line in figure 1.

3.2 Effects of Work Habits on Grades
The first hypothesis investigated was that students who do well

on the assignments will tend to do well on the final exam. Figure 2
shows a plot of term grade (from the assignments) versus exam
grade, which suggests that such a relationship is present.

We compared student grades with the number of transactions of
various types executed by the student, hoping to see that a certain
1Considerfoo(a,b,c,d) instead offoo(a, b, c, d) .
2Each time a student doescvs commit , only changes to the code
are stored. The “total diff length” feature is the total character count
of all the deltas combined.

42

M.I. (bits) Feature Description

0.29 newline characters in students files
0.28 times a space followed a comma, e.g. “foo(a, b, c) ”
0.26 characters in diff text between successive revisions (CVS)

———–
0.20 comments (Python)
0.20 literal strings (Python)
0.19 operators (Python)
0.16 characters in all comments
0.16 function definitions (Python)
0.14 while loops (Python)
0.14 Terminal tokens (Python)
0.13 4-space indents
0.13 comment-space-capital sequences e.g. “// Formatted ”
0.12 commits (CVS)
0.12 for loops (Python)
0.11 newlines (Python)
0.11 files in repository
0.11 violations of “Assertions should include message” (PMD)
0.11 self references (Python)
0.10 modifies (CVS)
0.10 violations of “Avoid duplicate literals” (PMD)
0.10 except tokens (Python)
0.10 leading tabs
0.10 total transactions (CVS)
0.09 Average revisions per file (CVS)

Figure 1: Mutual information between various features of a
student’s repository and the binary indicator of whether they
fall into the top third or bottom third of the class (by final
grade). Each feature is acount of how many times it occurred,
for example ‘comments (Python)’ is the number of comments
a student had in their code. Features marked (Python) were
drawn from the students’ Python code. Likewise, the (CVS)
marking means the feature was drawn from the CVS logs, and
(PMD) denotes rule violations PMD found. Only values greater
than 0.22 bits are statistically significant at thep = .05 level,
given the number of students. Significant features are located
above the horizontal line.

0 20 40 60 80 100

Term Mark
0

20

40

60

80

100

E
xa

m
 M

ar
k

Figure 2: The relationship between the two components mak-
ing up a final grade. term mark is the net mark on the coding
assignments. Radius of each circle indicates the total number
of CVS transactions executed by the student.

type of transaction (or mix of types) is particularly indicative of per-
formance. The displays, however, suggest that no particular trans-
action types are indicative of high or low performance (see figure 6
below). This was confirmed by our mutual information analysis
which shows that none of transaction type counts have statistically
significant mutual information with grade.

Each of the features extracted from the work habits of the student
was examined for a relationship with final course grade. While we
anticipated several of these would have an impact, it turnedout that
none had mutual information with final grade that was statistically
significant at thep = 0.05 level. In particular, we were surprised
to note that how early a student starts assignments, and how close
to the deadlines they submit, had essentially no predictivevalue for
student grade. (Although some students may have started work on
their home machines early but not checked into the CVS repository
until the last moment.)

In fact, the only feature drawn from the CVS repository that had
statistically significant mutual information with final grade was the
total number of characters in the diff text between successive re-
visions. This, however, is actually an estimate of how much total
code the student has written, as opposed to a feature of theirwork
habits.

These results suggest that, contrary to the beliefs of many in-
structors, student work habits have very little effect on their per-
formance, so long as they eventually do the work. Students who
wait until the last minute to do an assignment appear just as likely
to do well (or poorly) as those who both start and complete the
assignment well ahead of time.

3.3 Effects of Code Quality on Grades
Both visual and quantitative analysis techniques were applied in

an attempt to correlate the various features describing code quality
with grade.

The feature with the strongest predictive value turned out to be
lines of code written, as measured by the number of linefeed charc-
ters in the files in each student’s repository. Plots of gradeversus
lines of code are shown in figure 3. They show informally that
students who write very little code tend to do poorly (but beyond
a certain point writing more code does not correlate with higher
grades) and that (with a few exceptions) students who do wellon
assignments also do well on the exam. We have also performed a
more quantitative mutual information analysis (see below)showing
that the number of lines of code written is a statistically significant
(though weak) predictor of grade at thep = 0.05 level, and is a
stronger predictor than any other complex feature we were able to
find. Figure 7 provides an alternate view of this relationship, show-
ing histograms of the lines of code written by students in thetop
third and bottom third of the class, as well as those written by the
entire class.

This relationship is not surprising considering that students who
do not write enough code to complete an assignment necessarily
get low grades. Once a student writes enough code to finish an
assignment, lines of code are no longer a strong indicator ofquality.

One of the other two features that had statistically significant
mutual information with the grade of students at thep = 0.05 level
was also a code quality measure: the number of times a comma was
followed by a space. This indicates care being taken in formatting
code, and may well be an indication of the total time spend on the
assignment by the student. It is true that some programmers prefer
the f oo(a,b) form; thus, if the code feature indicates the no-space
form, no conclusion can be drawn from code formatting habits.

The fact that all three of the statistically significant indicators
of performance were indicators of time spent on the assignments

43

suggests a simple conclusion:
In order to succeed in a course, students should invest the nec-

essary time to complete assignments with care. It doesn’t matter
when they put this time in, so long as they do so.

3.4 A Machine Learning Approach to Grade
Prediction

With numeric features in hand, we were ready to try a variety
of statistical pattern recognition algorithms for predicting grades
based on the features. Specifically, the algorithms were trained
to distinguish between students in the top and bottom third of the
class, with those in the middle third left out. Of course, thelack of
significant mutual information between grades and most of the fea-
tures we extracted did not bode well for such an enterprise, but we
conducted several experiments nonetheless and report their results
here.

We used three very basic algorithms from the machine learning
and applied statistics fields: nearest neighbour classification, Naive
Bayes, and logistic regression. Before we could classify, we nor-
malized the features to have zero mean and unit variance. (We
applied this normalization to all features, even those whose his-
tograms were obviously not Gaussian.)

As expected, none of the classifiers were able to reliably predict
grades for students based on the features given. While some algo-
rithms managed to overfit the training sets and achieve 0% training
error, the errors on an independently held out test set were always
far inferior. A leave-one-out (LOO) cross validation estimate of
test error was typically around 25%. In particular, for logistic re-
gression, our LOO error was 29.7%, for Naive Bayes it was 23.9%
(using discretized versions of the features), and for nearest neigh-
bour it was also 23.9% (atK = 21 using Euclidean distance in the
normalized feature space). In all these experiments, we used 166
normalized features to classify 69 students from the top third of the
class (by grade) from 69 students from the bottom third.

4. CONCLUSION
We have described the results of analyzing data from a large col-

lection of CVS repositories created by many coders, in this case
students, working on a small set of identical projects (course as-
signments). We have implemented a complete system for parsing
such repositories into a SQL database and for extracting, from the
database and repositories, various statistical measures of the code
and version histories.

Although version control repositories contain a wealth of de-
tailed information both in the transaction histories and inthe ac-
tual files modified by the users, we were unable to find any mea-
surements in the hundreds we examined which accurately predicted
student performance as measured by final course grades; certainly
no predictor stronger than simple lines-of-code-written was found.

These results directly challenge the conventional wisdom that a
repository contains easily extractable predictive information about
external performance measures. In fact, our results suggest that
aspects such as student work habits, and even code quality, have
little bearing on the student’s performance. We are eager tohave
other researchers suggest novel measures which, contrary to our
efforts, contain substantial information about productivity, grades,
or performance.

Acknowledgments
We thank Karen Reid, Michelle Craig, and Eleni Stroulia for help-
ful discussions about the data and analysis tools. STR is supported
in part by the Canada Research Chairs program and by the IRIS
program of NCE.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Total Lines of Code Written

Figure 3: Final grade versus normalized lines of code the stu-
dent wrote. The correlation visible in this graph between grade
and lines of code is as strong as the correlation between grade
and any other complex feature we were able to find.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Comma and space (,) [py|java]

Figure 4: The only other feature to show significant correlation
with grade; the number of times a space followed a comma.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Comma and no space (,) [py|java]

Figure 5: The compliment of the above feature is number of
times a comma appears without a subsequent space. From the
graph (and the mutual information calculations bear this out)
there is very low correlation with grade.

44

5. REFERENCES
[1] CVS. http://www.cvs.org/ .
[2] PMD: A style checker.

http://pmd.sourceforge.net/ .
[3] ViewCVS. http://viewcvs.sourceforge.net/ .
[4] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting

fault incidence using software change history. InIEEE
Transactions on Software Engineering, volume 26, July 2000.

[5] Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS
historical information to understand how students develop
software. InProc. International Workshop on Mining Software
Repositories (MSR04), Edinburgh, 2004.

[6] T. Zimmermann and P. Weibgerber. Preprocessing CVS data
for fine-grained analysis. InProc. International Workshop on
Mining Software Repositories (MSR04), Edinburgh, 2004.

Number of CVS operations vs. Final grade

Checkout Update

0 0.5 1 1.5 2
Number of transactions / average

0

20

40

60

80

100

F
in

al
 G

ra
de

Modify Add

Figure 6: Final grade versus normalized frequency of transac-
tions of various types. (Normalization was done by dividingout
the mean.) Each circle represents a single student. The verti-
cal position of the circle in each panel gives the student’s final
grade in the course while the horizontal position represents a
normalized number of transactions of a particular type. Visu-
ally, there is no strong correlation present between any of these
frequencies and grades; this is confirmed quantitatively bythe
mutual information analysis in figure 1.

-2 2

Total Lines of Code Written

0

5

10

15

20
Top third of class (by final grade)

0

5

10

15

20
Bottom third

Normalized lines of code
0

5

10

15

20

N
um

be
r

of
 s

tu
de

nt
s All students

Figure 7: Histograms of (normalized) lines of code written,for
the top third (by grade), bottom third, and entire class of 207
students. Visually, it can be seen that students who write more
code are more likely to be achieve high grades. This feature was
the top scoring predictor of grade in our mutual information
analysis and is a statistically significant (though weak) predic-
tor of high grade at the p = 0.05 level.

45

46

 Text Mining

47

Toward Mining “Concept Keywords” from Identifiers
in Large Software Projects

Masaru Ohba
Tokyo Institute of Technology
2-12-1 Oookayama Meguro

Tokyo 152-8552, JAPAN

m-ohba @sde.cs.titech.ac.jp

Katsuhiko Gondow
Tokyo Institute of Technology
2-12-1 Oookayama Meguro

Tokyo 152-8552, JAPAN

gondow @cs.titech.ac.jp

ABSTRACT
We propose the Concept Keyword Term Frequency/Inverse Doc-
ument Frequency (ckTF/IDF) method as a novel technique to ef-
ficiency mineconcept keywordsfrom identifiers in large software
projects. ckTF/IDF is suitable for mining concept keywords, since
the ckTF/IDF is more lightweight than the TF/IDF method, and the
ckTF/IDF’s heuristics is tuned for identifiers in programs.

We then experimentally apply the ckTF/IDF to our educational
operating systemudos , consisting of around 5,000 lines in C code,
which produced promising results; theudos ’s source code was
processed in 1.4 seconds with an accuracy of around 57%. This
preliminary result suggests that our approach is useful for mining
concept keywords from identifiers, although we need more research
and experience.

Keywords
concept keywords, program understanding, identifiers, TF/IDF

1. INTRODUCTION
Many programmers make all possible effort to make their iden-

tifiers both concise and descriptive enough to suggest their role in
a program (for example, “read dirent() ” in udos [10], as op-
posed to “f() ”). Fortunately, such descriptive identifiers provide
a wealth of information which can aid in program understanding.
From the previous example,dirent implies “directory entry” -
a key concept in understanding the FAT file system[2]. Thus, we
see the benefits for program understanding that mining such terms
can bring. In this paper we present a tool which can mine such
key concepts, calledconcept keywords, from identifiers present in
source code.

Concept keywords, for the most part, contribute to program un-
derstanding in three ways.

• Concept keywords highlight important parts in source code
and implicit relations among them.

In program understanding, not all code fragments are equally
important, and important parts are unequally distributed in
source code. Also important parts change depending on your
concern. By using, for example, text editor highlighting1

1For example,highlight-regexp.el for the Emacs editor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA
MSR’05 Saint Louis, Missouri USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

for concept keywords in your concern (e.g.,dirent), you
would quickly find important parts in source code.

Also concept keywords help you to find implicit relations in
source code. For example, by searchingdirent , you can
find a comment like “/* FAT12 read is used for sequen-
tial access to directory entries, whileread dirent for ran-
dom access*/ ”. This relation betweenread dirent and
FAT12 read is implicit in the sense that there is no control
dependence nor data dependence between them.

• Concept keywords bridge the gap in understanding between
source code and specifications, caused by abstraction mis-
match.

By relating the parts with a same concept keyword, you can
find the corresponding descriptions more efficiently. For ex-
ample, when you find a function “read dirent ” in source
code, you can imagine the function reads a “directory en-
try”, and know its structure by searching “directory entry”
and “dirent” in FAT specification[2]. Of course concept key-
words do not work well for vocabulary mismatch (e.g., the
function nameread folder entry for reading a direc-
tory entry); we assume most programmers try to avoid such
vocabulary mismatch in naming identifiers.

• Identifiers have an good affinity for software repositories and
a technique for mining concept keywords can also be applied
to large software repositories.

This is because the characteristics of a typical software repos-
itory such as the combination of version control system, mail-
ing list system and bug tracking system are almost the same
as those of identifiers; both of them are language indepen-
dent, text-based, machine-processable in a lightweight man-
ner, and so on.

Many program understanding tools are already available such as
call-graph extractors, cross-referencers, slicers, outlining tools, source
code browsers, beautifiers, code metrics tools, documentation tools,
debuggers, profilers, etc. However, none of these tools can mine
concept keywords. Our goal is to develop a novel tool for mining
concept keywords from identifiers.

Unfortunately, it is very challenging to efficiently and accurately
mine concept keywords from identifiers in large software since con-
cept keywords are hidden within numerous identifiers in a some-
what “unexpected” manner; thus we need to use a lightweight heuris-
tic mining algorithm suitable for identifiers. Existing and well-
known mining algorithms such as the TF/IDF weighting method[16]
does not work well for identifiers, since the characteristics of con-
cept keywords and identifiers are quite different from those of natu-
ral languages. For example, identifier prefixes such askbd (mean-
ing ”keyboard”), are often used to group strongly related identifiers,
but this does not occur in natural language. The TF/IDF method
gives high scores to prefixes which are not concept keywords, re-
sulting in inaccurate mining.

48

Moreover, existing algorithms may prove too heavy for mining
concept keywords. Software is continually getting larger and more
complex - GCC (GNU Compiler Collection) has over 400,000 lines
in C, and requires over 30 minutes to build2. Furthermore, reducing
the time-to-market is of paramount importance in today’s software
development projects. Hence programmers require efficient mining
tools and need to find a new technique suitable for mining concept
keywords.

In this paper we propose the Concept Keyword Term Frequency
and Inverted Document Frequency (ckTF/IDF) method to efficiently
and accurately mine concept keywords. Our basic ideas are:

• ckTF/IDF is a very lightweight method, obtained by simpli-
fying TF/IDF scoring.

• ckTF/IDF is tuned for identifiers. For example, ckTF/IDF
excludes meaningless prefixes with a high accuracy.

To see how this idea works in practice, we experimentally ap-
plied ckTF/IDF method to our educational operating systemudos [10]
(about 5,000 lines in C).udos is selected as a testbed, since:

• We are familiar with theudos source, since one of the au-
thors (Gondow) developedudos . Thus we can examine the
result of the experiment using our knowledge aboutudos .

• Concepts in operating systems can be enumerated from OS
text books and specifications such as POSIX, hardware man-
uals, etc.

• udos is a relatively small operating system, yet complicated
enough to realize the importance of concept keywords.

As a result, ckTF/IDF processedudos ’s source code in 1.4 sec-
onds with an accuracy of around 57%. This preliminary result
suggests that our approach is helpful for mining concept keywords
from identifiers, although we need more research and experience.

This paper is organized as follows. Section 2 describes the char-
acteristics of concept keywords, and the difficulty of mining them.
Section 3 introduces our new ckTF/IDF method. Section 4 ex-
plains our experimental implementation of the framework for the
ckTF/IDF. Section 5 describes our preliminary experiment of ap-
plying ckTF/IDF toudos and its results. Section 6 describes re-
lated work. Section 7 gives our conclusions and suggestions for
future work.

2. CONCEPT KEYWORDS
This section describes the characteristics of concept keywords,

and the benefits and difficulty of mining them.

2.1 What is a concept keyword?
In Section 1, we mentioned a concept keyword is a word that

represents a key concept in program understanding, anddirent
(directory entry) is an instance of concept keywords. So what is
the definition of concept keywords? Unfortunately there is no clear
definition of concept keywords, since they are highly based on sub-
jective judgement. To make our discussion clear, we use the fol-
lowing three terms for concept keywords.

• Ideal concept keywords, which have proven to improve pro-
gram understanding by some objective measurements.

• Human-selected concept keywords, which a developer or re-
viewer believes are ideal concept keywords.

• Machine-extracted concept keywords, which a method like
TF/IDF produced as an approximation of ideal or human-
selected ones.

2By GCC-3.4.3 on Pentium 4(supported HT) 2.6GHz, 512MB
RAM, Linux-2.6.8-1-686-smp

For example,dirent is a human-selected concept keyword in
the sense that we just judged so. Although it is still unknown due
to the lack of good metrics whetherdirent is an ideal one or
not, our software development experience suggests a hypothesis
that concept keywords exist as a small subset of words in identifiers.

Table 1 shows the number of all human-selected concept key-
words that we selected fromudos ’s source code, along with those
of words in other categories. Table 1 tells around 22% (= 61/279)
of words in identifiers are human-selected concept keywords, which
supports the above hypothesis.

Hereafter, in this paper, we often use the termconcept keyword
for referring to ahuman-selected concept keyword. In Section 5,
machine-extracted concept keywordsby ckTF/IDF and TF/IDF are
compared withhuman-selected concept keywordsin Table 1.

2.2 Why concept keywords?
In this section, we explain why mining concept keywords from

identifiers has a great potential to dramatically improve program
understanding.

Program understanding is the most important activity in software
development and software maintenance. In [12], for example, it is
estimated that “some 30-35% of total life-cycle costs are consumed
in trying to understand software after it has been delivered, to make
changes”. Thus improving program understanding is a key issue in
software engineering.

To alleviate this problem, as mentioned in Section 1, many pro-
gram understanding tools have already been developed and researched
such as call-graph extractors[11], cross-referencers, slicers, outlin-
ing tools, etc. Although many successes have been achieved in
individual areas by these tools, the cost of program understanding
still remains high.

This reason is twofold. One reason is inaccuracy in tools. An
empirical study [14], for example, reported that call graphs ex-
tracted by several broadly distributed tools vary significantly enough
to surprise many experienced software engineers. The other reason
is the limitations of tools. For example, even ideal call-graph ex-
tractors cannot cover the whole range of information required in
program understanding. This observation leads us to the necessity
of developing yet another kind of tools, and of discovering some
ways to well combine them with the existing tools.

Our idea of mining concept keywords provides a new kind of
support for program understanding. As mentioned in Section 1,
concept keywords can contribute to programing understanding in
various ways. Also it is easy to combine our mining technique with
the existing tools like version control system, mailing list system
and bug tracking system, since both of them have the same charac-
teristics of being language independent, text-based, machine-processable
in a lightweight manner. Thus, the idea of mining concept key-
words seems very attractive and can have a great potential to im-
prove program understanding. As far as we know, however, little
work has been done so far for mining concept keywords in source
code.

2.3 Why difficult to mine concept keywords?
As mentioned in Section 1, however, existing and well-known

mining algorithms such as the TF/IDF weighting method do not
work well for identifiers, since the characteristics of concept key-
words and identifiers are quite different from those of natural lan-
guages, and since existing algorithms can be too expensive for min-
ing concept keywords.

In order to accurately mine concept keywords, we feel it is nec-
essary for users to experiment with parameters (such as the term
frequency threshold) - hence, a lightweight algorithm is preferred
over a more expensive one in order to enable frequent experimen-
tation.

Hence, we intrude ckTF/IDF, an algorithm based on TF/IDF
which is less expensive without sacrificing quality of keywords
mined. The differences between the two algorithms will be shown
in Section 3.3 and 5.

49

Table 1: Human-selected concept keywords and other category words inudos
category # examples description

1. concept keywords 61 dirent , root , PTE, tss ,
path , signal , yield

helpful key concepts for program understanding

2. grouping words 18 kbd , vga , FAT12 , sys ,
FDC , RTC , console , H, t

prefixes and suffixes for grouping functions and variables, or
for other purposes

3. attributes, and less im-
portant concepts

70 busy , byte , offset , name,
memory, end , int8 , again

general nouns and adjectives used as attributes, modifiers, etc.,
being less informative in themselves.

4. generic verbs 130 read , set , is , move, wait ,
print , dump, make, init

generic verbs to describe actions or operations; the same names
are commonly used for unrelated functions

3. ckTF/IDF METHOD
In this section, we propose theConcept Keyword Term Frequency

and Inverted Document Frequency(ckTF/IDF) method to efficiently
mine concept keywords.

3.1 Overview of TF/IDF method
Before we define the ckTF/IDF method, this section gives an

overview of the TF/IDF method, which ckTF/IDF is based on. The
TF/IDF is a method for mining characteristic terms and document
classification. The key feature of TF/IDF heuristics is to give a high
score (i.e., high term weight) as a characteristic term if the term
appears more frequently in a particular document and less in other
documents. The weight of a term in a document is calculated by its
term frequency (TF) and its inverse document frequency (IDF) in
all the documents.

The inverse document frequencyidf(t) for a termt is defined as
follows.

idf(t) = log
N

df(t)
(1)

wheredf(t) is the number of documents including the termt, N
the number of all documents.

The term weightw(t, d) for a termt and a documentd is defined
as follows.

w(t, d) = tf(t, d) · idf(t) (2)

where tf(t, d) (meaning the term frequency) is a count of occur-
rence of termt in documentd.

Thus keywords can be mined from documents in natural lan-
guages by picking terms with high weights calculated by TF/IDF.

3.2 Definition of ckTF/IDF method
This section gives the definition of the ckTF/IDF method. The

ckTF/IDF treats one source file as one document, since most source
code written in C are expedient granularity for mining concept key-
words from our experience. For example,dirent androot of
concept keywords in FAT file system appear inudos ’s fat12.c
only, and not appear in others.

The ckTF/IDF is a very simplified and thus speeded-up version
of TF/IDF by quantizingtf(t, d) and idf(t) into 0 or 1. The idf(t)
for ckTF/IDF is defined as follows.

idf(t) =


1 if 1 ≤ df(t) ≤ n and¬is prefix(t)
0 otherwise (3)

wheredf(t) is the same as in TF/IDF,n(≥ 1) the threshold (de-
fault is1) to quantizetf(t, d) andidf(t), and isprefix(t) a predicate
being true if and only ift is a prefix for all its occurrences.

The term frequencytf(t) in all documents and the word weight
w(t) for ckTF/IDF are defined as follows.

tf(t) =


1 if ∃d, tf(t, d) > n
0 otherwise (4)

w(t) = tf(t) · idf(t) (5)

In ckTF/IDF,w(t) = 1 implies the termt is characteristic, sot
is selected as a (machine-extracted) concept keyword.

The value ofw(t) can be computed very fast by using the two
flags: local frequency flagandglobal frequency flagfor each term
t (local(t) andglobal(t) for short, respectively). First all identi-
fiers in source code are divided into terms by some delimiters like
underscores. Then two flags are computed for each term, consid-
ering a language construct for grouping (e.g., a compilation unit
for the programming language C) as a document. When a term
t is found twice in a document,local(t) is set without perform-
ing the remaining computation. Similarly, whent is found in two
documents,global(t) is set without performing the remaining com-
putation. Note thatlocal(t) andglobal(t) are not exclusive; both
can be set at the same time. Iflocal(t) is set,global(t) is clear,
and the term is not a prefix, thenw(t) becomes1. Otherwise,w(t)
becomes0.

Thus ckTF/IDF realizes a lightweight way of mining concept
keywords. The computational complexity of ckTF/IDF and TF/IDF
is discussed in Section 3.3. Some actual measurements of their
performance are shown in Section 5.

3.3 ckTF/IDF vs. TF/IDF

3.3.1 Characteristics of ckTF/IDF
For most cases,w(t) = 1 for ckTF/IDF when maxd w(t, d) for

TF/IDF is high, andw(t) = 0 when maxd w(t, d) is low. Thus
there is a high correlation between ckTF/IDF and TF/IDF. There
are two exceptions for this.

• ckTF/IDF imposes a penalty for prefix terms, while TF/IDF
not. This penalty is introduced to ckTF/IDF, since prefixes
like kbd (meaning “keyboard”) are not likely to be concept
keywords from our experience, and also since this penalty
can be computed fast.

• When two flags are set at the same time, ckTF/IDF’s score
is always0, while TF/IDF’s score varies. This can be the
cause of inaccuracy of ckTF/IDF, whentf(t, d) is very large
or df(t) is small but greater than 1. This can be alleviated by
adjusting the thresholdn in Equation (3) and (4).

3.3.2 Computational complexity
For computing allw(t) and maxd w(t, d) from the scratch, com-

putational complexity of both ckTF/IDF and TF/IDF are the same
asO(|D|+ |T |) whereD is a set of all documents andT a set of all
terms, although ckTF/IDF is much faster than TF/IDF in practice
(see also Section 5).

The difference arises when computing them incrementally. Sup-
pose that we add a set of documents∆D including a set of terms
∆T . The complexity for ckTF/IDF isO(|∆D|+ |∆T |), while that
for TF/IDF isO(|D + ∆D|+ |T + ∆T |).

4. DESIGN AND IMPLEMENTATION
This section gives a brief description of the design and imple-

mentation of Identifer Exploratory Framework (IEF), which we ex-
perimentally developed as a framework for the ckTF/IDF method
(IEF’s source code is available in [15]). Figure 1 shows the overview

50

ckTF/IDF

TF/IDF

machine-extracted

concept keywords

framework for

pluggable filters

IEF graphical

viewer

read_dirent() {

return NULL;

}

word

co-occurrence

matrix base

identifier/word

extractor

read_dirent

read_root_dirent

(read, dirent)

(read, root, dirent)

read dirent root

read 0 1 1

dirent 0 0 0

root 0 1 0

read

root

dirent

word

co-occurrence

graph

user
source

code

Figure 1: Components of Identifier Exploratory Framework
(IEF)

Figure 2: Screen snapshot of IEF graphical viewer

of IEF. Figure 2 shows a sample screen snapshot of IEF’s GUI,
which displays a co-occurrence graph for words inudos ’s fat12.c .
The components of IEF are:

• Identifier/word extractor- extracts all definitions of function
and global variables from a given source code by utilizing a
cross-referencer GNU GLOBAL[3], and then tokenizes their
names into words. Note that uses of functions/variables are
not extracted to avoid the increase of document frequency
for important global functions. It simply uses underscore ()
as delimiter to avoid heavyweight processing like morpho-
logical analysis or use of dictionary. Thus it is lightweight,
although it cannot tokenize some identifiers likekmalloc
(meaning “kernel memory allocation”). It consists of around
300 lines in Ruby script language[5] and some C code for
GNU GLOBAL.

• Word co-occurrence matrix base(i.e., word corpus): is a sim-
ple database that stores all words extracted from identifiers,
along with co-occurrence information in identifiers and their
filenames.

• Framework for pluggable filters: is the core feature of IEF. It
provides the extensibility for implementing additional filters,
and also provides interface for filters to access the word co-
occurrence matrix. Currently only the filters for ckTF/IDF
and TF/IDF are available, which consist of around 400 lines
in Ruby.

• IEF graphical viewer: allows users to browse the word co-
occurrence graph and the output of the filters. IEF graph-

Table 2: Total # of word occurrences by position forudos
category word position

first last middle
1. concept keywords 14 21 75
2. grouping words 141 20 33
3. attributes 78 17 199
4. generic verbs 23 38 41

total 256 96 348

ical viewer is implemented using Grappa graph-drawing li-
brary[4]. It consists of around 500 lines in Java.

Figure 2 shows a screen snapshot of IEF graphical viewer,
which displays a co-occurrence graph of words infat12.c
of udos . In the graph, a rectangle node implies a termt such
that global(t) = 1, an oval node implies a termt such that
global(t) = 0, and an edge implies the two end nodes of the
edge co-occurs in a same identifier. At the first time we saw
the co-occurence graph, we soon found that human-selected
concept keywords likedirent or root almost correspond
to non-global nodes with many edges in the graph. This ex-
perience actually motivated us to start this research.

5. PRELIMINARY EXPERIMENT
To see how ckTF/IDF works in practice, we experimentally ap-

plied the ckTF/IDF and TF/IDF to our educational operating sys-
temudos ’s source code[10]. This section gives the results of this
experiment.

5.1 Accuracy and Coverage of ckTF/IDF
In this paper, we use the measures of accuracy and coverage to

evaluate the performance ckTF/IDF and TF/IDF by comparing the
concept keywords extracted by a human programmer with that of
the algorithm. Accuracy and coverage correspond to a measure of
precision and recall, respectively. We defineAccuracy= Cr

Cm
and

Coverage= Cr
Ch

. whereCm is the total number of all machine-
extracted concept keywords,Ch is the total number of human-
extracted concept keywords , andCr is the total number of concept
keywords that both human and algorithm have chosen.

Figure 3 shows accuracy and coverage when applying ckTF/IDF
the the codebase ofudos . We found an accuracy of 57% (=16/28)
and a coverage of 26% (=16/61) and that the accuracy in mining
concept keywords increases by removing uncecessary words, those
which are not considered to be of less significance as defined in
“(c)” and “(d)” in Figure 3.

In contrast, the accuracy and coverage of TF/IDF forudos are
28% (=8/28)3 and 13% (=8/61), respectively (not shown in any
figure). Thus, as far as this experiment is concerned, ckTF/IDF
delivers twice better accuracy and coverage than TF/IDF.

5.2 Removing Prefixes Improves Accuracy?
In Section 3.3.1, we mentioned ckTF/IDF imposes a penalty for

prefix terms under the hypothesis that prefixes are unlikely to be
concept keywords. Table 2 supports this hypothesis, which tells
that concept keywords rarely occur in the first position (around 5%
= 14/256), while grouping words often occur there (around 55% =
141/256).

So does the heuristics of ckTF/IDF work? The answer is subtle.
Figure 3’s (a) and (b) explain this subtlety. (a) is the result with the
prefix penalty, while (b) is the result without it. By using the prefix
penalty, the accuracy increased to 57% (7% up), but the coverage
decreased to 26% (5% down).

3TF/IDF outputs word weighting for all entries as results, while
ckTF/IDF outputs only candidates of concept keywords. Therefore,
in order to compare ckTF/IDF’s results with that of TF/IDF, we
limited the comparison to the firstn candidates, wheren is the
number of candidates returned by ckTF/IDF.

51

20

2 1

38

0

7

1

7
3

5 6

13

4

47

7 7

27

18

78

16

0

10

20

30

40

50

60

70

80

90

(a) (b) (c) (d) (e)

N
u
m
b
e
r

o
f

t
e
r
m
s

28 words 40 words

43 words 30 words

166 wods
dtotal # of words = 279

Coverage �à 26%
Accuracy �à 57%

Coverage �à 31%
Accuracy �à 50%

C C C C CG G G G GA A A A AV V V V V

Results without prefix Results with prefix

Legend: C=concept keywords, G=grouping words, A=attributes, V=verb,
(a)=¬global(t) ∧ local(t) ∧ ¬is prefix(t)
(b)=¬global(t) ∧ local(t), (c)= global(t) ∧ ¬local(t)
(d)= global(t) ∧ local(t), (e)=¬global(t) ∧ ¬local(t)

Figure 3: Accuracy and coverage of ckTF/IDF forudos

5.3 Performance of ckTF/IDF and TF/IDF
As mentioned before, ckTF/IDF processedudos ’s source code

in 1.4 seconds (including file I/O time).udos (around 5,000 lines
in C), however, is too small to compare the performance, so we
used the Ruby interpreter instead ofudos . Ruby consists of around
48,000 lines in C (excluding blank lines), and has 3,385 identifiers.

Table 3 shows a comparison of the execution speeds4 of ckTF/IDF
and TF/IDF for the Ruby interpreter. “Computation from scratch”
in Table 3 means the term weight computation of the whole source
code of the Ruby intepreter, and “incremental computation” means
re-computation of the above results after a document including 7
words is added. As far as the results are concerned, ckTF/IDF is
about 6 times faster than TF/IDF. Note that “0 sec” in Table 3 means
a very small amount of time, not really zero.

6. RELATED WORK
To our knowledge, little work has been done so far for mining

concept keywords in program identifiers.
Caprile et al.[8, 9] proposes an identifier restructuring tool, which

uses a semiautomatic technique for the restructuring of identifiers,
and enforces a standard syntax for their arrangement. They con-
sider identifiers as an important tool for programming understand-
ing, but their research is not for mining concept keywords in pro-
gram identifiers.

Anquetil[6] attempts manually mining concepts from program
identifiers and comments. He applied his manual technique to the
Mosaic system, relating, for example,xm andxmx to the X Win-
dow System. His experiment took quite a long time (around 30
hours), while our mining by ckTK/IDF took only around 1.4 sec-
onds to automatically processudos ’s source code.

Anquetil et al.[7] proposes a technique for extracting concepts
from the abbreviated filenames (such as “dbg” for debug or “cp” for
call processing). Although they achieved a high accuracy (80% to
85% of abbreviations found when used with an English dictionary),
their technique seems too heavy for mining identifiers in large soft-
ware projects.

Knuth[13] tries to achieve better program understanding by in-
tegrating both of source code and documents using theWEBlan-
guage. In contrast, our aim is to achieve better program under-
standing for large open source code like GCC, not written inWEB,
by mining concept keywords from program indentifiers.

7. CONCLUSION
4File I/O time is excluded.

Table 3: Execution speeds of ckTF/IDF and TF/IDF for Ruby
interpreter (in elapsed time)

ckTF/IDF TF/IDF
computation from scratch 0.24 sec 1.57 sec
incremental computation 0 sec 0.44 sec

We have proposed the Concept Keyword Term Frequency/Inverse
Document Frequency (ckTF/IDF) method as a novel technique to
efficiency mineconcept keywordsfrom identifiers in large software
projects. Testing the algorithm using the source code ofudos
(5,000 lines of C), we found that it was processed in 1.4 seconds
with an accuracy of around 57% and coverage of around 26%. Cov-
erage of around 26% is not necessarily high, although the ckTF/IDF
method is extremely lightweight and high in accuracy. We assume
that the coverage can be increased by incorporating approaches
used in other mining algorithms.

This preliminary result suggests that our approach is helpful for
mining concept keywords from identifiers, although we need more
research and experience.

Our future works include: (1) to apply our mining technique to
large practical software like GCC or Apache and to provide com-
prehensive evaluation, (2) to apply concept keywords and/or the
ckTF/IDF method to a Bug Tracking System (BTS) like bugzilla[1]
to relate keywords in bug reports to the corresponding source code,

8. REFERENCES
[1] Homepage for bugzilla.

http://bugzilla.mozilla.org/ .
[2] Homepage for FAT32 file system specification.

http://www.microsoft.com/whdc/system/platform/
firmware/fatgen.mspx .

[3] Homepage for GNU GLOBAL.
http://www.gnu.org/software/global .

[4] Homepage for Grappa.
http://www.research.att.com/˜john/Grappa/ .

[5] Ruby language homepage.
http://www.ruby-lang.org .

[6] Nicolas Anquetil. Characterizing the informal knowledge contained
in systems. InWCRE: Proc. 8th Working Conf. on Reverse
Engineering, pages 166–175, 2001.

[7] Nicolas Anquetil and Timothy Lethbridge. Extracting concepts from
file names: a new file clustering criterion. InICSE ’98: Proc. 20th
Int. Conf. on Software Engineering, pages 84–93. IEEE Computer
Society, 1998.

[8] Bruno Caprile and Paolo Tonella. Nomen est omen: Analyzing the
language of function identifiers. InWCRE ’99: Proc. 6th Working
Conf. on Reverse Engineering, page 112. IEEE Computer Society,
1999.

[9] Bruno Caprile and Paolo Tonella. Restructuring program identifier
names. InICSM: Int. Conf. on Software Maintenance, pages 97–107,
2000.

[10] K. Gondow. Homepage for an educational operating systemudos .
http://www.sde.cs.titech.ac.jp/˜gondow/udos/ .

[11] K. Gondow, T. Suzuki, and H. Kawashima. Binary-level lightweight
data integration to develop program understanding tools for
embedded software in c. InProc. 11th Asia-Pacific Software
Engineering Conference (APSEC), pages 336–345, 2004.

[12] P. A. V. Hall. Overview of reverse engineering and reuse research.
Information and Software Technology, 34(4):239 – 249, 1992.

[13] Donald E. Knuth.Literate Programming (Center for the Study of
Language and Information - Lecture Notes, No. Van Nostrand
Reinhold Computer, 1989.

[14] G.C. Murphy, D. Notkin, and E.S.-C. Lan. An empirical study of
static call graph extractors. InProc. 18th Int. Conf. on Software
Engineering (ICSE-18), pages 90–99, 25–29 Mar 1996.

[15] M. Ohba. Homepage for the concept keyword mining tool.
http://www.sde.cs.titech.ac.jp/˜m-ohba/cktfidf/ .

[16] Gerard Salton and Christopher Buckley. Termweighting approaches
in automatic text retrieval.Information Processing and Management,
Vol. 24(5), 1988.

52

Source code that talks: an exploration of Eclipse task
comments and their implication to repository mining

Annie T.T. Ying, James L. Wright, Steven Abrams
IBM Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532, USA

{aying,jimwr,sabrams}@us.ibm.com

ABSTRACT
A programmer performing a change task to a system can
benefit from accurate comments on the source code. As part
of good programming practice described by Kernighan and
Pike in the book The Practice of Programming, comments
should “aid the understanding of a program by briefly point-
ing out salient details or by providing a larger-scale view
of the proceedings.” In this paper, we explore the widely
varying uses of comments in source code. We find that pro-
grammers not only use comments for describing the actual
source code, but also use comments for many other purposes,
such as “talking” to colleagues through the source code us-
ing a comment “Joan, please fix this method.” This kind
of comments can complicate the mining of project informa-
tion because such team communication is often perceived
to reside in separate archives, such as emails or newsgroup
postings, rather than in the source code. Nevertheless, these
and other types of comments can be very useful inputs for
mining project information.

1. INTRODUCTION
Accurate comments on source code can be useful to a pro-

grammer performing a change task. As Knuth suggested in
the literate programming technique, programs should not
only be intended to be executed by computers, but also in-
tended to be read by human [4]. As part of good program-
ming practice, Kernighan and Pike suggested that program-
mers should write comments that “aid the understanding
of a program by briefly pointing out salient details or by
providing a larger-scale view of the proceedings” [3].

Many programmers use comments for purposes other than
describing source code, but yet these comments contain very
useful information to a programmer performing a change
task. One example of such a kind of comments is the Eclipse
task comments [1]. Since March 2003, Eclipse—a popular
open-source integrated development environment—has pro-
vided support for comments that describe tasks to be per-
formed on the source code through the task tag mechanism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

Using the Java perspective in Eclipse, Java programmers
can embed pre-defined task tag strings, such as “TODO”,
in the comments on the source code and use the task view to
browse a summary of the places in the code with a comment
that contains a task tag. From the task view, a user can click
on an entry and navigate to the corresponding source code.

In this paper, we perform an informal empirical study on
the use Eclipse task comments in Java source code. As a pre-
liminary study, we look at an IBM internal codebase, the Ar-
chitect’s Workbench (AWB). We found that although many
of these comments do not describe the actual source code,
they describe other interesting development aspects, such as
communication and changes that were performed or to be
performed to the source code. For example, some developers
“talk” to colleagues through the source code using a com-
ment such as “Joan, please fix this method.” Such kinds of
comments can complicate the mining of project information
because such team communication and task-oriented infor-
mation is often perceived to reside in separate archives, such
as emails or change request management systems, rather
than in the source code. In addition, these comments typi-
cally contains ad-hoc meta-data, depends on the context of
the code, have a implied scope, and are informal.

The rest of the paper is organized as follows: first, in
Section 2, we present a categorization of Eclipse task com-
ments from our study on the AWB codebase. In Section 3,
we describe the challenges of analyzing task comments in
the context of mining project information. In Section 4, we
discuss some issues with our study. Finally, in Section 5, we
conclude and outline future work.

2. TASK COMMENTS CATEGORIZATION
To explore what information Eclipse task comments con-

tains and what they are intended for, we studied the Eclipse
task comments that were in the AWB code checked out from
the AWB CVS repositories on February 9, 2005. The code-
base consists of 2,213 files. The code contains 221 task com-
ments1.

The AWB project consists of two major parts: a platform
that provides customizable representations and tool support
for models, and a particular instantiation of this platform in
the system architecture domain, which embodies a tool that
helps IT architects transform informal notes into various
formal system architecture models. The source code of AWB
is written primarily in Java and is implemented as an Eclipse

1We define the number of task comments as the number of
lines of Java comments that contain the string “TODO”.

53

plug-in.
Five developers contributed to the task comments in the

version of the AWB code we studied. To preserve the pri-
vacy of the developers, whenever we paraphrase a comment
from the AWB codebase, we have substituted the name of a
developer in a comment with a made-up name–Beth, Joan,
Pam, Rea, or Sue.

In the AWB codebase, we found different uses of Eclipse
task comments. We categorized these different uses, as
shown in Table 1. The first column shows the categories,
each of whose cell belongs to one of the seven main groups:
communication, past tasks, current tasks, future tasks,
pointers to a change request, location markers, and concern
tags. The second column presents an example of Eclipse task
comment found in the AWB code. Some comments belong
to multiple groups, for example, a comment that is both for
communication and for describing a task. For the rest of
this section, we describe the seven categories of comments
and present an examples of comment from each categories.

Each of the sub-sections in the rest of this section de-
scribes a main category and the examples listed in Table 1.

2.1 Communication
We found some cases where developers use the source code

as a medium to communicate to each other.

• In the example labelled “communication: point-to-
point” in Table 1, Sue wrote an Eclipse task comment
dedicated to Joan. Prior to this message, Sue and Joan
had actually discussed the error that was fixed by the
hack referred in the comment. In their discussion, Sue
suggested the hack. Although Joan was not satisfied
with the hack, Joan could not come up with a better
fix. Because of the urgency to get the bug fixed, Sue
just temporarily implemented the hack. To remind
Joan to better fix the error, Sue wrote this comment.

• In the example labelled “communication: multi-
cast/broadcast” in Table 1, Joan may have intended
to only direct this question to Sue, the implementer
of the method referred in the comment. However, this
question may worth directing to other team members
who may be thinking to call this method and thus may
advocate against making the method non-public.

• In the example labelled “communication: self-
communication” in Table 1, the example serves as a
reminder to Pam herself to clean up the tracing state-
ments in the code.

2.2 Pointers to change requests
Some Eclipse task comments denote a task that is part

of a bigger change logged in the change tracking system.
AWB uses their own change tracking system called the ECR
(Enhancement Change Request) system.

• In the example labelled “pointer to a change request”
in Table 1, Pam wrote the two comments to redirect
further details to the change report ECR with ID 327.
Because an Eclipse task comment is in a particular lo-
cation in the code, it often denotes a finer-grained task
that a task logged into the change tracking system.

2.3 Bookmarks on past tasks
We found in the AWB that some comments describe

changes that had been completed. These comments often
denote places where changes to the code may require fur-
ther work.

• In the example labelled “bookmark: hack” in Table 1,
which is the same example as an example we described
in Section 2.1, Sue indicated that she had performed
a code modification which was a hack.

• Another example shows that Eclipse task comments
are used to mark places in the code where the de-
veloper is uncertain about whether the change actu-
ally fixed the defeat. In the task comment labelled as
“bookmark: experimental fix” in Table 1, Joan wrote
this same comment in several places in the code. Al-
though she has completed a fix to a threading problem,
she is not totally confident that fix actually solves the
problem until the system has been used for a while.
Therefore, she marked use this comment to mark the
places that contributed to the fix.

2.4 Current tasks
Most of the comments in the AWB code denotes outstand-

ing tasks that need to be done currently.

• In the example labelled “current task: refactoring” in
Table 1, Pam uses a comment to suggest refactoring,
briefly outlining the current strategy and the suggested
strategy.

• Another example of a current task is a task comment
generated by the Eclipse code generator. When using
Eclipse to generate a Java class from a super-class or
an interface, Eclipse automatically inserts a “TODO”
comment for the generated methods and constructor
stubs, as demonstrated in the example labelled “cur-
rent task: from automatically generated code” in Ta-
ble 1. Eclipse also generates a “TODO” comment for
an empty Java catch black when Eclipse “Encode try-
catch block” functionality is used to generate a catch

block.

2.5 Future tasks
Some tasks cannot be done currently because those tasks

depend on something to be available in the future:

• In the example labelled “future task: once the library
is available...” in Table 1, Pam cannot proceed with
the task of using the “Eclipse-icon-Decorator” mech-
anism in the code depends on the availability of that
mechanism.

• Similarly, in the example labelled “future task: once
some code modification is complete” in Table 1, the
developer cannot perform the task until ECR 317 is
complete.

2.6 Location markers
All tasks comments are location markers – the Eclipse

task view enables a developer to easy view and navigate to
the places in the code with task comments:

54

Categories Example

communication: // TODO an ugly hack for now -sue. Joan, please fix it

point-to-point
communication: // TODO joan: explain why this [method] is public, since it

multi-cast/broadcast is used only internally

communication: // TODO [..] remove tracery if cell-editing is ever stable

self-communication
pointer to a change request RichAttributeComparison.java: // TODO pam: ECR 311: get

copy-text button to work

AttributeViewerImpl.java: // TODO pam: ECR 311: handle the

case of multiple Node-*types*

bookmark: // TODO an ugly hack for now -sue. Joan, please fix it

hack
bookmark: // TODO joan EXPERIMENTAL

experimental fix
current task: // TODO [..] make this work using subtyping, not parsing the

refactoring String type-name!

current task: // TODO Auto-generated method stub

from automatically generated code
future task: // TODO pam: once we have the Eclipse-icon-Decorator

once the library is available... mechanism, use it here

future task: // TODO [..] eliminate this once ECR 317 complete

once some code modification is complete ...
location marker: // TODO

point location
location marker: // TODO Workaround for [..]

range location [..]

// [..] End Workaround
concern tag in 12 places in the code: TODO pam: null-guard case of [..]

[input] corruption

Table 1: Eclipse task comment categorization

55

• For example, the empty comment labelled “location
marker: point location” in Table 1 serves as a location
marker. Considering the context, such a comment can
serve as a reminder that something needs to be done
to the code around the comment.

• Another example, the example labelled “location
marker: range location” in Table 1, precisely denotes
a range of source code that the task comment applies
to.

2.7 Concern tags
To mark the places in the code that are related to a sin-

gle concern [5], developers place the same identifying tag—
which we call concern tag—in the task comments. This
is concern tagging approach is an example of Griswold’s
information transparency techniques, which aim to cap-
ture related parts of the code—especially the ones that are
not well-modularized—by non-programming language con-
structs, such as naming convention, formatting style, or tags
embedded in comments [2].

• In the example labelled “concern tag” in Table 1, the
developer used the same comment to denote 13 places
in the code that relates to an input corruption.

3. ANALYZING COMMENTS
Having investigated the task comments in the AWB code-

base, we see some challenges in using Eclipse task comments
as inputs in repository mining, which are discussed in the
rest of this section.

3.1 Inferring meta-data from a task comment
An Eclipse task tag only provides two pieces of meta-data

than a Java comment, tag creation time and tag severity:
Eclipse logs the time when the task tag is first saved, and
also supports users in defining a severity value for each task
tag type (not for each instance of task tag).

From our study, we see that developers employ common
convention to encode additional meta-data that is not ex-
plicitly supported by a Eclipse task tag. However, some of
types of meta data can still be hard to infer from comments.

Author
Many comments contain the name of the author of the com-
ment. This author information can be helpful for searching
all the comments written by the author. However, parsing
the author information from the comment may require some
care because the format of the format of the author infor-
mation can vary. For example, Pam tends to put her name
preceding a colon, as in “// TODO pam: [..].” Sue some-
times types her name all in letters followed by a dash, as in
“// TODO [..] -sue.” If the source code is kept in a code
repository, an alternative way to infer the author informa-
tion is to associate the author information in the change log
with the comment.

Change request identifiers
An Eclipse task comment sometimes represents a task that a
developer needs to perform as part of the change described in
the change tracking system, as shown in Section 2.2. In such
a case, the developer usually put the change request number
in the comment. For example, in AWB, a change request

is denoted as an ECR (Enhancement Change Request) and
a particular ECR is referred to by its ID, such as in “//
TODO pam: see ECR 327.” The convention for specifying
an ECR is pretty standard, with the ECR number followed
by the string “ECR”.

3.2 Implied context in a task comment
Because the tags are embedded in the code, task com-

ments tend to depend a lot on the context of the surround-
ing code. For example, some task comments tend to use
context-sensitive words which need to be interpreted with
the surrounding code. For example, in the task comment
we have shown in Section 2.1, “// TODO an ugly hack for

now -sue. Joan, please fix it,” the word “it” requires
the previous discussion between Sue and Joan and the code
context to make sense.

Some task comments may not even have words at all, but
the meaning of the task may be apparent to a human. We
demonstrate by an example not from the AWB code, an
empty task comment “// TODO.” Such a comment does not
mean much on its own. However, if we notice that the task
comment is enclosed by a method with no statements, it is
apparent to us that the task is to implement the method.
Such a case can pose challenges to mining algorithms.

3.3 Inferring the scope of a task comment
The scope of the comment is often not apparent because

the comment only denotes a single point in the code. Devel-
opers use different assumptions on what region of code the
comment applies. For example, comments may not contain
any region information, but a developer sometimes uses a
comment that refers to the statement immediately following
the comment, sometimes uses a comment to refer to all the
statements until a blank line is encountered, and sometimes
uses a comment to denote the code in the whole enclosing
scope, such as the empty comment denoting an unimple-
mented method we describe in this section. Although we
have shown in Section 2.6 of one example where the devel-
oper have precisely denote a region that the comment applies
to, that is the only such example from the whole study.

In addition, the task comment may apply to multi-
ple non-contiguous places in code. For example, the
task comment “// TODO pam: remove tracery when NPE

[NullPointerException] is solved.” refers to tracing
statements in many places, not just the statement imme-
diately below the comment. Finding all the places the de-
velopers implied can be challenging for a mining tool.

Furthermore, even the developer may only have a fuzzy
idea of all the places the comment denotes. For example, the
task comment “// TODO -- Beth changed these at some

point, to something Eclipse 3.0 compliant” denote a
fuzzy area of code that was to be changed, as porting the
code to work with Eclipse 3.0 is not a trivial task and re-
quires changes to many places in the code. Thus, a devel-
oper cannot easily specifies all the places in the code that
need to be changed in complete when planning the change.
Therefore, it is very hard for a mining tool to infer such
information.

3.4 Informality in a task comment
In the study, we see that the task comments are typically

more informal and shorter than description from the bug
report or JavaDoc comments. For example, many of the

56

comments only contain one single word or incomplete sen-
tences. This is not surprising because many task comments
are meant for personal reminders and for temporarily use.
Also, because the task comments are embedded in the code,
the fear of clutterness in code may have prevented develop-
ers on elaborating a comment to make it formal. However,
this informality in the task comments can make the min-
ing tools that use natural language processing techniques
challenging to apply.

4. DISCUSSION
In this section, we discuss some issues with our study.

4.1 Significance of Eclipse task comments
To “talk” to other team members through source code, a

developer may use a Java comment, not necessarily a task
comment. However, we did not investigate all the Java com-
ments: The codebase contains 15,748 JavaDoc comments2

and 13,457 non-JavaDoc comments3 , and it was impossible
to analyze all of them manually. Although task comments
only accounts for a small fraction of all the comments in the
AWB codebase, we still chose to examine task comments.
Task comments are likely to be good candidates to contain
information that is relevant to the current development con-
text, as task comments are intended to be more transient—
created and deleted more often—than other comments.

4.2 Generalizability of the results
In this preliminary study, we examined the task comments

of one project. We cannot draw general conclusions about
our task comment categorization from only one project. In
addition, the results from this study may not be generaliz-
able to other projects. The AWB is a small team of less than
ten developers. Programming practices that are peculiar to
a particular developer can dramatically affect the results.

5. CONCLUSION AND FUTURE WORK
In this paper, we have described our preliminary study

on Eclipse task comments on the AWB codebase. We have
found that these task comments contain rich and a wide
range information, as shown in the categorization of task
comments we have presented. Many task comments from
study illustrate some challenges in treating task comments
as input for analysis.

Although the conclusion drawn from our study is not gen-
eralizable to all projects, our study has shown some exam-
ples of task comments being a promising input to analyze.
As future work, one direction of research is to infer the
meta-data and contextual information of task comments,
as such information is not captured by the current Eclipse
task mechanism. Another direction of research is to come up
with novels ways to analyze the inferred meta-data and con-
textual information, together with the content of the task
comments.

6. ACKNOWLEDGMENT
2We define the number JavaDoc comments as the number
Java tokens “/**” in the source code.
3We define the number of non-JavaDoc comments as the
number of Java tokens “//”, plus the number of Java tokens
“/*” in the source code.

We are grateful to the AWB team for lending their code-
base for this study, as well as the prompt and useful help
in understanding the intention of the comments. We would
also like to thank Mark Chu-Carroll and Martin Robillard
for many inspirational discussions. Moreover, we would like
to thank anonymous reviewers for the useful feedback.

7. REFERENCES
[1] Eclipse task tags website. http://127.0.0.1:55317/help/

index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-
preferences-task-tags.htm.

[2] W. G. Griswold. Coping with crosscutting software changes
using information transparency. In Reflection 2001:
International Conference on Metalevel Architectures and
Separation of Crosscutting, pages 250–265, 2001.

[3] B. W. Kernighan and R. Pike. The practice of programming.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[4] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[5] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communication of ACM,
15(12):1053–1058, 1972.

57

Text Mining for Software Engineering: How Analyst Feedback Impacts Final
Results

Jane Huffman Hayes and Alex Dekhtyar and Senthil Sundaram
Department of Computer Science

University of Kentucky
�hayes,dekhtyar�@cs.uky.edu, skart2@uky.edu

Abstract

The mining of textual artifacts is requisite for many important
activities in software engineering: tracing of requirements; re-
trieval of components from a repository; location of manpage text
for an area of question, etc. Many such activities leave the “fi-
nal word” to the analyst – have the relevant items been retrieved?
are there other items that should have been retrieved? When ana-
lysts become a part of the text mining process, their decisions on
the relevance of retrieved elements impact the final outcome of the
activity. In this paper, we undertook a pilot study to examine the
impact of analyst decisions on the final outcome of a task.

1. Introduction

One of the distinguishing features of data mining versus, for
example, similar database tasks, is the fact that knowledge ac-
quired from mining need not be exact. In fact, it may, in part,
be inaccurate. Methods for typical data mining tasks, such as clas-
sification, discovery of association rules, and retrieval of relevant
information, do their best to produce the most accurate results.
However, the accuracy is subject to the internal properties of the
method, as well as the quality and complexity of the artifacts (data)
under consideration.

In the field of Software Engineering, we can see two distinct
and well-defined ways in which data mining, information retrieval,
and machine learning methods are applied. The first direction
is the exploratory study of existing artifacts of software develop-
ment: document hierarchies, code repositories, bug report databases,
etc., for the purpose of learning new, “interesting” information
about the underlying patterns. Research of this sort is tolerant to
the varying accuracy of data mining methods: while certain sub-
tleties of some datasets might be missed, the most general patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’05, May 17, 2005, St. Louis, MO, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

Figure 1. Human analyst will always stand be-
tween computer-generated results and the fi-
nal result.

will, most likely, be discovered in analysis.
The second direction is the application of data mining1 tech-

niques to different processes in the software lifecycle with the pur-
pose of automating and improving performance on the tasks in-
volved. Potential benefits of such automation are significant. Data
mining techniques are typically applicable to some of the most
labor-intensive tasks, and are capable of speeding up the perfor-
mance on them by orders of magnitude. At the same time, such
applications of data mining methods are not very error-tolerant:
undetected inaccuracies that creep into the results of data mining
procedures may beget new inaccuracies in the later stages of de-
velopment, thus producing a snowball effect.

1Here and elsewhere in the paper we use the term “data mining” in
its broadest sense, including certain related activities and method-
ologies from machine learning, natural language processing, and
information retrieval in its scope.

58

To be able to obtain the benefits of applying data mining meth-
ods to specific tasks (good accuracy, fast), without the drawbacks
(inaccuracies are very costly), a human analyst must always as-
sess and possibly correct the results of the automated methods.
The process of involving data mining methods in task execution
during the software development lifecycle is described in Figure
1. A specific task is assigned to an analyst. The analyst has soft-
ware to help execute the task. The analyst consults the software,
obtains preliminary results, and provides the software with feed-
back. At some point, the analyst decides that the obtained answer
is correct and outputs the final results of the task.

As the goal of introduction of data mining methods is improve-
ment of the process, we are naturally concerned with the results
produced by the automated tool. However, we observe that the
only result that is seen by others is generated by the analyst!
Therefore, we can only succeed if the final result, prepared by a
human analyst, is good. In general, this is not equivalent to pro-
ducing good results automatically.

We view this process from the point of view of the developers
of the automated tool. Traditionally, the success of a data min-
ing tool is measured by the accuracy of its results. However, in
the process described in Figure 1, the ultimate concern lies with
the accuracy of the final, analyst-generated output. This output is
affected by a number of factors, including the accuracy of the au-
tomated tool. But is better accuracy of the tool equivalent to better
accuracy of the analyst? And are there any other factors that play
a role in analyst decision-making? Level of expertise? Trust of the
software?

In order to claim success of the software, we must study not
only the quality of the software output, but also what the analysts
do with it. The ultimate success of the software is then determined
by the quality of the final output.

What we have done. We have performed a pilot study on how
human analysts work with machine-generated data. Our study was
conducted using the task of IV&V requirements tracing [2, 3, 1]
on a relatively small dataset. While the study was too small in size
(only three analysts participated) to draw any far-reaching conclu-
sions, its results (in all cases, the quality of the results decreased)
suggest that we are looking at the right problem. The pilot study
is discussed in Section 4 of the paper.

What we are planning to do. In Section 3 we outline the
framework for a large scale experiment measuring the work of an-
alysts with computer-generated data. Our goal is to determine the
“regions” of precision-recall (see Section 2) space representing the
quality computer-generated answer sets that allow human analysts
to produce final results of high quality. We are also interested
in studying what external factors affect analyst interaction with
computer-generated artifacts.

We begin by briefly outlining our research on the use of In-
formation Retrieval (IR) methods for candidate link generation in
requirements tracing tasks, and by describing how we came across
the problem discussed in this paper.

2. Motivation: Humans Matter!

We first came across the issue of the quality of analyst evalua-
tion of computer-generated results during our preliminary experi-
ments with the application of information retrieval (IR) to require-
ments tracing [2]. At its core, requirements tracing boils down
to comparing the content of pairs of high- and low-level require-

SuperTracePlus Analyst
Correct links (total) 41 41
Correct links found 26 18
Total number of 67 39
candidate links
Missed requirements 3 6
Recall 63.41% 43.9%
Precision 38.8% 46.15%

Table 1. SuperTracePlus and analyst perfor-
mance on the MODIS dataset.

Figure 2. From SuperTracePlus trace to Ana-
lyst’s trace.

ments and determining whether they are similar/relevant to each
other. We hypothesized that IR methods, that basically do the same
thing, can be applied successfully to tracing.

We had implemented two IR methods and wanted to compare
the results these methods produced with the results obtained by
a senior analyst working with a familiar advanced requirements
tracing tool (SuperTrace Plus). The complete results of that ex-
periment can be found in [2]. The analyst received a tracing task
(19 high-level and 50 low-level requirements, 41 true links from
the MODIS [5],[4] documentation) and performed it in two steps.
First, he used SuperTracePlus (STP) [6], a requirements tracing
tool developed by Science Applications International Corporation
(SAIC), to obtain a list of candidate links. The analyst then used
the candidate trace generated by STP as a starting point and exam-
ined each link in detail. He removed from the trace links that he
deemed unnecessary and also introduced some new links (wher-
ever he felt that a link was missing). In Table 1, we have summa-
rized this part of the experiment (all data comes from [2]).

As can be seen from the table, the analyst improved the preci-
sion of the final trace. However, the analyst significantly lowered

59

the recall2. Using a recall-vs.-precision plot, we can illustrate the
shift in these key measures of the quality of the trace from STP to
the analyst (see Figure 2). In this experiment, the senior analyst
had a high level of familiarity with SuperTracePlus, however, he
was not very familiar with the MODIS project (beyond the dataset
that we provided).

While a single point of anecdotal evidence is insufficient for
any conclusions, it prompted us to consider the implications of the
analyst’s work with the software on the final results.

3. Large Scale Study

As mentioned in Section 1, when data mining tools are used
directly in the software lifecycle process, rather than for after-the-
fact analysis, high accuracy of the outcome must be ensured. Hu-
man analysts play the role of inspectors, examining the output of
the tools and correcting it where necessary. The result of their
work is passed along to the next tasks.

We ask ourselves a question: in the presence of mining tools,
what factors affect the result produced by the analyst?

Right now, we only have a partial answer. Clearly, there are
some overall factors that affect the quality of the analyst work,
with or without software: analyst expertise with the task, level
of domain expertise, and even such mundane and hard-to-control
factors such as boredom with the task. However, in the presence
of mining software designed to provide good approximations fast,
there are other factors. The accuracy of the tool must play a role.
Also, the degree of the analyst’s familiarity with the tool and the
degree of analyst trust in the results of the tool play a role.

However, simply stating that there is a dependence is not enough
- as the exact character of such dependence is not obvious. For ex-
ample, we would like to hypothesize that the quality of the tool
results (measured in terms of precision and recall) affect the qual-
ity of analyst results in a monotonic way: better recall-precision of
the tool yields better recall-precision of the final result. However,
we note that if the precision and recall of the tool are very low
(e.g., around 10% each), the analyst has “nowhere to go but up.
” At the same time, when the precision and recall of the tool are
very high (e.g., around 95%), the analyst has almost “nowhere to
go but down. ” Should we observe such results, how do we inter-
pret them and what conclusions do we draw for the tool? Should
we be “watering down” the results of an accurate tool, to ensure
that an analyst will not decrease the precision and recall?

The goal of the large scale study we plan to undertake is to
discover the patterns of analyst behavior when working with the
results of data mining tools during the software lifecycle and to
establish the factors that affect it and the nature of their effects.

The key factor we are looking at in the first stage is software
accuracy, that we represent via the precision-recall pair of mea-
sures. The space of all possible accuracy results is thus a two-
dimensional unit square as shown in Figure 3. For both preci-
sion and recall, we establish the regions where the values are low,
medium, and high3. The nine regions are shown in Figure 3.

2Precision is defined as the number of correct answers returned di-
vided by the total number of answers returned. Recall is defined as
the number of correct answers returned divided by the total num-
ber of answers.
3There is a certain assymetry between recall and precision in this
respect. We assume that precision is high if it is above 60%, and
is low when it is under 33%. However, the recall is high when its

Figure 3. Sampling the space of possible out-
puts: what will the analysts do?

Our experiment consists of offering senior analysts, who have
experience with requirements tracing, a computer-generated can-
didate trace with a preset accuracy from one of the nine regions.
The analyst would then be asked to check the candidate trace and
submit, in its place, the final trace. We will measure the accuracy
of the final trace and note the shift from the original (such as in
Figure 2).

Our goal is to establish under which levels/conditions of the
software, analyst expertise, and analyst attitude towards software,
the resulting output improves (significantly) upon the computer-
generated candidate trace. Such discovery has two implications
on the software and the process. We must ensure that the mining
tool delivers results in the accuracy range that allows the analysts
to improve it. We must also strive to create the right conditions for
the analysts to work with the data.

4. First Steps

In our preliminary study, our goal is to investigate the feasi-
bility of our hypothesis, that the accuracy of computer-generated
candidate traces affects the accuracy of traces produced by the an-
alysts. We also want to understand if a more detailed study is
needed.

For the pilot study, we used the final version of the MODIS
dataset described in [2, 3]. It contains 19 high-level requirements,
49 low-level requirements, and 41 true links between them. Using
the output of one of our IR methods as the base, we generated can-
didate traces for a number of sampled points from the precision-
recall space described in Section 3, including the three candidate
traces (also shown in Figure 3) with the following parameters4:

value is above 70-75%, and is low when it is below 45%.
4Altogether, we have generated six different candidate traces and
distributed them to six analysts. However, only three analysts have
completed their work at this time.

60

You may perform this task on your own schedule, at
your convenience, in the location that you prefer
(home, work, etc.). The work need not be completed
all in one sitting.
We have provided you with the following items:
1 - A textual listing of the high level requirements;
2 - A textual listing of the low level requirements;
3 - A trace report indicating potential low-level
requirements for a given high-level requirement;
These items may be used in softcopy form (i.e., you
may feel free to use a word processing tool to perform
interactive searches, etc.) or may be printed out and
used in hardcopy. We will discuss each below.
The trace report contains the list of candidate links
for each high-level requirement. The candidate links
for a single high-level requirement are shown in the
order of decreasing relevance.
Your task is to produce the final traceability report
from the given trace report and ensure that all high
level requirements have been traced correctly and that
any low level requirements for them have been identi-
fied. The end product that you should provide to us
is:
- A marked up trace report (cross through low level
requirements that you do not agree with, write in low
level requirements that you feel are missing);
- A brief description of how you performed the task
(did you use Word to search through the softcopy?, did
you read everything from the hardcopy?);
- A log of how much time you spent on this task.

Figure 4. Instructions for the pilot study par-
ticipants (abridged).

T1: Precision=60%; Recall=40%;
T3: Precision=20%; Recall=90%;
T4: Precision=80%; Recall=30%5.

The candidate traces were distributed to experienced analysts
with tracing experience (manually or with a tool). The abridged
version of the instructions provided to the analysts is shown in
Figure 4.

Each analyst was provided with one of the trace sets described
above. They were given a one-week period to perform the work,
but were not given any time constraints (i.e., they could spend as
many hours on the task as they desired). The analysts were asked
to return their answer sets (all chose to return softcopies in various
formats), a brief description of the process employed during the
experiment (to determine conformance), and a brief log of activ-
ities. From each answer set we have collected the following in-
formation: Or-Pr, Or-Rec, original recall and precision; Pr, Rec,
precision and recall achieved by the analyst; Rmv, Rmv-Tr, to-
tal number of links and number of true links removed and Add,
Add-Tr, total number of links and number of true links added by
the analyst; Delta-Pr, Delta-Rec, the change in precision and re-
call, and Time, the time spent on the task. Table 2 and Figure 5
summarize the results of the pilot study.

5. Conclusions and Future Work

As stated in Section 1, we are aware of some shortcomings of

5Because we had 41 true links in the dataset, for some values of
recall and precision, we had to take the nearest achievable point
(e.g., 12 true links in the trace, equal to 29.2% recall, was used for
the 30% recall point).

T1 T3 T4
Or-Pr: 39.6% 20% 80%
Or-Rec: 60.9% 90.2% 29.2%
Rmv: 38 155 10
Rmv-Tr: 6 11 5
Add: 26 16 43
Add-Tr: 4 2 6
Pr: 45.1% 58.7% 22.9%
Rec: 56.1% 65.8% 26.8%
Delta-Pr: + 3.1% + 38.7% - 57.1%
Delta-Rec: - 5.8% - 24.4% - 2.4%
Time: 2.5 hrs 2 hrs 3 hrs

Table 2. Summarized results of the pilot study.

IR and text mining methods, such as that they admit inaccurate
results. This is why, when used in tasks within the software life-
cycle, an analyst needs to inspect computer-generated results to
prevent the snowball effect.

It is clear from our anecdotal study that there are factors at
work influencing analyst decision making, and, hence, the final re-
sults. For example, examining Table 2, we can see that analysts
who were given trace sets with low recall took longer to complete
the task (25 - 50% longer). They did not necessarily produce any
“worse” final results than the analyst with a high recall trace set
(note that the analyst who had the high recall trace set ended with
recall that was 24.4% lower). This observation is particularly in-
teresting because the analyst with that trace set, T3 (recall of 90%
and precision of 20%), had a large amount of false positives to go
through. That means many more candidate links had to be exam-
ined. One would think that such an arduous process would result in
worse results than an analyst who did not have to ’wade through’
many false positives. But in this very small study, that was not the
case.

In the pilot study, the analysts did not exhibit a pattern of im-
proving the results of the candidate traces “no matter what.” That
would have rendered our questions moot. On the contrary, analyst
behavior consistently shifted the answers towards the vicinity of
the ��������� � ����		 line (see Figure 5). This was evident if
recall was higher than the ��������� � ����		 line to begin with,
or if it was lower than the ��������� � ����		 line to begin with.

It is clear, then, that we must undertake a larger, controlled ex-
periment, as described in Section 3. This must be done to ensure
that we account for important factors that may influence analyst
decisions, such as expertise, familiarity with/trust in the software,
domain knowledge, etc. . . At the same time, we must factor out
some extraneous variables, such as environmental issues (e.g., am-
bient noise), etc.

Acknowledgements. Our work is funded by NASA under grant NAG5-
11732. We thank Stephanie Ferguson, Ken McGill, and Tim Menzies. We
thank the analysts who assisted with the pilot study.

6. References
[1] Dekhtyar, A., Hayes, J. Huffman, and Menzies, T., Text is

Software Too, Proceedings of the International Workshop on
Mining of Software Repositories (MSR) 2004, Edinborough,
Scotland, May 2004, pp. 22 - 27.

61

Figure 5. Pilot study: what the analysts did.

[2] Hayes, J. Huffman, Dekhtyar, A., Osbourne, J. Improving
Requirements Tracing via Information Retrieval, in Proceedings of
the International Conference on Requirements Engineering (RE),
Monterey, California, September 2003, pp. 151 - 161.

[3] Hayes, J. Huffman, Dekhtyar, A., Sundaram K.S., Howard S.,
Helping Analysts Trace Requirements: An Objective Look, in
Proceedings of the International Conference on Requirements
Engineering (RE), Kyoto, Japan, September 2004.

[4] Level 1A (L1A) and Geolocation Processing Software
Requirements Specification, SDST-059A, GSFC SBRS, September
11, 1997.

[5] MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS, November 10,
1997.

[6] Mundie, T. and Hallsworth, F. Requirements analysis using
SuperTrace PC. In Proceedings of the American Society of
Mechanical Engineers (ASME) for the Computers in Engineering
Symposium at the Energy & Environmental Expo, 1995, Houston,
Texas.

62

 Software Changes and Evolution

63

Analysis of Signature Change Patterns
Sunghun Kim, E. James Whitehead, Jr., Jennifer Bevan

Dept. of Computer Science
Baskin Engineering

University of California, Santa Cruz
Santa Cruz, CA 95060 USA

{hunkim, ejw, jbevan}@cs.ucsc.edu

ABSTRACT
Software continually changes due to performance improvements,
new requirements, bug fixes, and adaptation to a changing
operational environment. Common changes include modifications
to data definitions, control flow, method/function signatures, and
class/file relationships. Signature changes are notable because
they require changes at all sites calling the modified function, and
hence as a class they have more impact than other change kinds.

We performed signature change analysis over software project
histories to reveal multiple properties of signature changes,
including their kind, frequency, and evolution patterns. These
signature properties can be used to alleviate the impact of
signature changes. In this paper we introduce a taxonomy of
signature change kinds to categorize observed changes. We report
multiple properties of signature changes based on an analysis of
eight prominent open source projects including the Apache HTTP
server, GCC, and Linux 2.5 kernel.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Product metrics, K.6.3
[Management of Computing and Information Systems]:
Software Management – Software maintenance

General Terms
Measurement, Experimentation

Keywords
Software Evolution, Signature Change Patterns, Software
Evolution Path

1. INTRODUCTION
Software continually changes due to performance improvements,
new requirements, bug fixes, and adaptation to a changing
operational environment [1]. Software changes include function
body modification, local variable renaming, moving functions
from one file to another, and function signature changes [2].
Among these changes, function signature changes have a
significant impact on parts of the source code that use the changed
functions. Most signature changes cause a signature mismatch
problem. Understanding the character and evolution patterns of
function signature changes is important to researchers concerned
with alleviating the impact of signature changes.

Others have observed code changes, though none have examined
signature changes at the same level of detail. Kung et al. identified
kinds of code changes [2] and Counsell et al. discussed the trends
of changes in Java code [3]. Both of them identified large
granularity change kinds, such as method body changes, method
addition, method deletion and whether the signature changed.
Their categorization of changes is useful for understanding
software changes in overview. Our analysis of signature changes
is motivated by the goal of eventually providing automated
support for fixing signature mismatches, and for this we need a
very fine-grain understanding and characterization of signature
changes. Previous work did not examine signature changes at this
level of detail, being concerned only with whether the signature
did, or did not, change, but not what kind of change.

We focus on fine-grain changes in function signatures,
categorizing them based on whether they increase, decrease, or do
not modify the data flow between caller and callee. Within these
broad categories, change kinds are further refined. We show the
properties of function signature change patterns by answering the
following research questions: How often do signatures change?
What are the common signature change kinds? How often does
each kind appear? Do they have a common evolution pattern?

The answers, along with analysis of the results, can be used to
predict future signature changes, provide automatic change
accommodation algorithms, develop glue code generators, or
develop refactoring algorithms.

We analyzed eight prominent open source projects listed in Table
1. These eight open source projects are written in the C
programming language. For our analysis, we used Kenyon, a data
extraction, preprocessing, and storage backend designed to
facilitate software evolution research [4]. Using Kenyon, we
checked out all revisions or copied all releases of source code
from each project, and extracted function signatures. We grouped
signatures by function name, and observed the changes over
revisions or releases to find properties of signature changes. We
implemented an automatic signature change kind identification
tool, but some change patterns are not automatically identifiable,
such as concept splitting and merging. We also compared the
number of signature changes over all functions to find the
frequency of each signature change kind. Finally we looked for
sequence patterns in the common evolution paths of function
signature changes.

The remaining sections of the paper are as follows: In Section 2,
we describe our analysis process with detailed information from
the open source projects we analyzed. Sections 3, 4, 5, and 6
provide answers to our research questions. We discuss the
limitations of our analysis in Section 7, and conclude in Section 8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00.

64

Table 1. Open source projects we analyzed. LOC indicates number of lines in .h and .c source files, including comments. The
period shows the project history period for projects for which we directly accessed the SCM repository, otherwise we list release

numbers. The number of revisions indicates the number of revisions we extracted or the number of releases we analyzed.

Project Software type LOC SCM Period/Releases # of revisions/releases
Apache Portable Runtime (APR) Portable C library 72,630 Subversion Jan 1999 ~ Jan 2005 5832 revisions
Apache HTTP 1.3 (Apache 1.3) HTTP server 116,393 Subversion Jan 1996 ~ Jan 2005 7508 revisions
Apache HTTP 2.0 (Apache 2) HTTP server modules 104,417 CVS Jul 1999 ~ Aug 2003 3877 revisions
Subversion SCM software 183,740 Subversion Aug 2001 ~ Feb 2005 5886 revisions
CVS SCM software 62,415 CVS Dec 1994 ~ Sep 2003 2873 revisions
Linux Kernel 2.5 (Linux) Linux OS 5,140,625 N/A 2.5.1 ~ 2.5.75 75 releases
GCC C/C++ compiler 506,931 N/A 1.35, 1.36, …, 2.7.2 15 releases
Sendmail SMTP server 127,733 N/A 8.7.6, 8.8.3, …, 8.13.3 37 releases

2. ANALYSIS PROCESSES
We analyzed eight open source projects, listed in Table 1, using
the Kenyon system. Kenyon checks out all revisions from a SCM
repository and invokes a fact extractor we implemented to extract
function signatures. The extracted signatures are grouped by
function names. The grouped signatures are ordered by revisions
and stored in a signature change history file.

For the projects we analyzed, the revision history was stored using
either the CVS or Subversion SCM system. An important issue in
software evolution research is the extraction of logical
transactions from the SCM repository. Since Subversion assigns a
revision number per commit, there is no need to recover
transactions for Subversion-managed projects [5]. CVS does not
keep the original transaction information, usually requiring a
process of transaction recovery [6]. Kenyon provides CVS
transaction recovery using the Sliding Time Windows algorithm
[4, 6]. Recently, the Apache Software Foundation (ASF) changed
its SCM repository to Subversion from CVS using the cvs2svn
converting tool. We analyzed some ASF projects, including
Apache 1.3 and APR, whose repositories were converted. Since
the cvs2svn tool uses the fixed time window algorithm [6] to
convert CVS data for Subversion, using the converted data won’t
affect our analysis results.

We manually observed the signature change history file to identify
common signature change kinds. After analyzing the signature
change history files from various open source projects, we found
the common change kinds shown in Table 3. While most of the
change patterns can be automatically identified by a static
software analysis, some change kinds, such as concept
merging/splitting changes are not automatically identifiable,
requiring project knowledge concerning the project and parameter
concepts. We implemented an automatic signature change kind
identifier that reads a signature change history file, and annotates
the file based on the identified kinds. After the signature change
history file annotation, we calculate the frequency of each change
kind. We also examine the sequence of signature change kinds of
a given function to see if there was a common pattern in the
signature evolution. The results of our analysis are presented in
following sections.

3. SIGNATURE CHANGE KINDS
Before presenting our results, we describe our fine-grain
taxonomy of signature change kinds. First we define the basic
elements of a function signature: parameter, argument, return
parameter, and the signature.
The modifier indicates a data type modifier such as const, register,
and static. A type is the data type of a parameter, and name

indicates the parameter name. The array/pointer is the count of
* or [] when a parameter is an array or pointer type. This
represents both the array/pointer type and its dimension. Using
these basic definitions, we now identify and define signature
change kinds. In the remainder of the definitions, we use the
subscript new to indicate a later revision and old a previous revision.
If we omit the equality of elements, assume the other elements are
the same. For example, in Definition 2 we define N if the nameold
and namenew are different. We assume all other elements such as
type and modifier are the same.

Definition 1 (Parameter, Argument, Return parameter, Signature)
 Parameter Param ≡ {modifier, type, name, array/pointer, order}
 Argument Arg ≡ a set of zero or more Param
 Return parameter R ≡ {modifier, type, array/pointer}
 Signature S ≡ {R, function name, Arg}

Definition 2 (Name change)
Function name change FN ≡ function namenew ≠ function nameold
Parameter name change N ≡ namenew ≠ nameold

The name change category has two kinds: function name change
and parameter name change. Table 2 shows an example of
parameter name changes. A parameter name change does not
introduce a signature mismatch problem since the parameter name
is used internal to the function. However, parameter name changes
may cause semantic errors. For example, as shown in Table 2, if
the change of parameter from ‘service_name’ to ‘display_name’
indicates a change in parameter meaning, call sites will compile
without error, but the software may not work as expected due to
the change in meaning.

Table 2. A parameter name change in Apache 1.3,
os/win32/service.c file, ValidService function. The old version
is on top, the new version is on bottom. Changes between
versions are shown in bold.

BOOL ← char *service_name
BOOL ← char *display_name

Definition 3 (Ordering change)
 Order ≡ the position of an argument

Ordering change O ≡ ordernew ≠ orderold
 Only ordering change o ≡ O and |Argnew| = |Argold|
 Ordering change by addition OA≡ O and |Argnew| > |Argold|
 Ordering change by deletion OD ≡ O and |Argnew| < |Argold|

The parameter ordering changes occur when the order of two or
more parameters has been changed. The typical motivation behind
these changes is parameter order consistency with other function

65

signatures. Sometimes adding or deleting parameters causes
signature ordering changes.

Definition 4 (Parameter modifier change)
 Parameter modifier change M ≡ modifiernew ≠ modifierold

Modifier changes happen when developers alter a modifier
without changing the data type. We mostly observed the addition
or removal of the ‘const’ modifier in the C programs of our data
set.

Table 3. A taxonomy of signature change kinds. The * item
indicates that the item is manually identifiable, and hence the
frequency is not reported in this paper.

Data flow
invariant

*Function name change (MN)
Parameter only ordering change (o)
Parameter name change (N)
Parameter modifier change (M)
*Concept merge/splitting change (CM/CS)
Array/Pointer operation change (P)
*Return type change (R)
Primitive type change (T)
Complex type name change (CN)

Data flow
increasing

Parameter addition (A)
Ordering change by addition (OA)
*Return type addition (RA)
*Complex type inner variable addition (CA)

Data flow
decreasing

Parameter deletion (D)
Ordering change by deletion (OD)
*Return type deletion (RD)
*Complex type inner variable deletion (CD)

Definition 5 (Parameter array/pointer change)
 Parameter array/pointer change P ≡ array/pointernew ≠ array/pointerold

Array/pointer dimension changes occur when developers add or
delete dimensions of pointer or array parameters. An example of
this change is shown in Table 4.

Table 4. A pointer change example in APR,
threadproc/unix/procsup.c file, ap_detach function.

ap_status_t ← ap_proc_t **new, ap_pool_t *cont
ap_status_t ← ap_proc_t *new, ap_pool_t *cont

Definition 6 (Parameter addition/deletion)
 Parameter addition A ≡ p ∈ Argnew and p ∉ Argold
 Parameter deletion D ≡ p ∉ Argnew and p ∈ Argold

The parameter addition and deletion changes are common change
kinds; an example is shown in Table 5.

Table 5. Parameter addition changes in the Linux kernel,
kernel/sched.c file, try_to_wake_up function. First sync was
added, then later the variable state was added.

static int ← task_t * p
static int ← task_t * p, int sync
static int ← task_t * p, unsigned int state, int sync

One of the most interesting change kinds is the concept
splitting/merging change defined in Definition 7. Usually concept
splitting/merging changes look like parameter addition or deletion
changes. But if we observe the changes carefully, the new
parameters can be derived from existing or deleted parameters.

For example, suppose a function takes ‘first name’ and ‘last name’
as its arguments. In the next version, the function takes only
‘name’. It seems the ‘first name’ and the ‘last name’ parameters
are deleted while the new ‘name’ parameter is added. In fact, the
new parameter, ‘name’, is a combination of the deleted parameters,
‘first name’ and ‘last name’. In this case, a derivation function F
exists.

Definition 7 (Concept merging/splitting change)
 Asub ⊆ Argold
 Concept merging CM ≡ A and ∃ a derivation function F,

such that padded = F(Asub) and |Asub|>1
 Concept splitting CS ≡ A and ∃ a derivation function F,

such that padded = F(Asub) and |Asub|=1

The ‘name’ parameter can be derived using a derivation function
F: ‘name’ = F (‘first name’, ‘last name’). We define this kind of
changes as a concept merging change. If the evolution goes in the
opposite direction, we define it as a concept splitting change.

Definition 8 (Primitive types and Complex types)
Primitive type set PTS ≡ {char, int, long, float, double}

 Is primitive type PT(t) ≡ true iff t ∈ PTS, else false
 Is complex type CT(t) ≡ true iff t ∉ PTS, else false

Definition 9 (Primitive type change)

Primitive type change ≡ typenew ≠ typeold and
 PT(typenew) and PT(typeold)
Definition 10 (Complex type change)

Type variable set TVS ≡ a set of variables used in a complex type
 Complex type name change CN ≡ typenew ≠ typeold

and (CT(typenew) or CT(typeold))
Complex type inner variable addition
 CA ≡ CT(typenew) and CT(typeold)

and typenew = typeold and |TVSnew| >|TVSold|
Complex type inner variable deletion
 CD ≡ CT(typenew) and CT(typeold)

and typenew = typeold and |TVSnew|<|TVSold|
Definition 11 (Return parameter change)

Return type change R ≡ modifiernew ≠ modifierold or
typenew ≠ typeold or array/pointernew ≠ array/rpointerold

 and typenew ≠ void and typeold ≠ void
 Return type addition RA ≡ typenew ≠ typeold and typeold = void
 Return type deletion RD ≡ typenew ≠ typeold and typenew = void

We define primitive type and complex types in Definition 8, and
based on this definition we define primitive type and complex
type changes.
The primitive type change indicates one of the parameter types
has been changed while the parameter name remains unchanged.
For example, if a parameter, ‘int age’ is changed to ‘long age’, it
is a primitive type change. If the primitive type and the parameter
name of an argument change together, it is a parameter
addition/deletion change.

0

10

20

30

40

50

60

70

80

APR Apache 1.3 Apache2 Subversion CVS Linux GCC Sendmail Average
Figure 1. The percentage of the primitive data types used in

function signatures of each project.

66

0

10

20

30

40

50

60

70

80

90

Name change Ordering
change

Additon Deletion Modifier
change

Array/Pointer Complex type
change

Primitive type
change

APR

Apache 1.3

Apache 2

Subversion

CVS

Linux

GCC

Sendmail

Average

Figure 2. The percentages of each change kind frequency of the eight open source projects and average.
In the open source projects we observed, on average 55% of data
types in signatures are complex data types (class, typedef, struct
or union); see Figure 1. If one of the complex data types is
changed, we define this change as a complex type change. These
changes are different from parameter addition or deletion changes
in that the old and new data types are related. Usually, when there
are major changes in a class or structure, developers change the
class/structure name. If there are only minor changes to the
structure or class, such as adding a member variable, the
structure/class name will not be changed. Since we are analyzing
only signatures, we cannot automatically identify changes inside
of structures or classes. To identify these changes, we need to
monitor the structure/class body for changes in each revision. We
may observe this in future work.

To define the major categories of our taxonomy, we use a data
flow model between a function and a client. A client calls a
function by passing arguments (Arg) and expecting returns (R) as
shown in Figure 3. The total data flow is the union of Arg and R,
defined in Definition 12. Broadly, when parameters or return
values are added, there is an increase in the amount of data
flowing between caller and callee, while parameter deletion or
removal of return values results in reduction of data flow.
Modifier changes or parameter name changes have no impact on
the data flow.

Figure 3. Data flow model.
Definition 12 (Data Flow)
 DF≡ Arg ∪ R

Data flow invariant ≡ |DFold| = |DFnew|
 Data flow increasing ≡ |DFold| < |DFnew|
 Data flow decreasing ≡ |DFold| > |DFnew|

4. FREQUENCY OF CHANGE KINDS
After identifying signature change kinds, we computed the
frequencies of each kind. Figure 2 shows the signature change
kind frequency percentages of each project. To simplify the graph
we aggregated ordering changes (Ordering change = o+OA+OD).
Figure 2 shows percentages for each change kind; the percentage
is calculated by taking the number of observations of a particular
change kind, and dividing it by the total number of signature
changes observed for that system. For example, in Apache 1.3, we
observed 202 parameter additions, and 327 total signature
changes, resulting in a frequency percentage of 61%.

Note that one signature change can include more than one change
kind. For example a signature change can include parameter
addition, parameter deletion, and ordering changes. As a result,
the summation of each percentage is greater than 100%. For
example, the sum of all the CVS project change kinds is 157 %. It
means that whenever a function has a signature change in the
CVS project, the signature change includes 1.57 different kinds of
change, on average. If there is more than one instance of a
particular change kind in a signature change, we count the kind
only once. For example, if a signature change includes a
parameter addition change three times, we count only one
parameter addition change.
Figure 2 shows that the most common change kinds are parameter
addition (average 52.13%), complex type changes (average
30.5%), and parameter deletion (average 22.75%). The
array/pointer and primitive type change are relatively uncommon
change kinds.

5. RATIO OF SIGNATURE CHANGES
To show the distribution of signature changes across functions,
we counted the number of functions having n signature changes,
with n varying from 0 to 16 signature changes (see Figure 4 for
the signature change distribution for Subversion). Figure 4 shows
that 5466 functions (77%) never changed their signature and 95%
of the functions had fewer than three signature changes.
Another interesting ratio of signature changes can be obtained by
comparing the number of signature changes and number of
function body changes. We may examine this in future work.

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of signature changes

N
u
m

b
e
r
 o

f
fu

n
c
tio

n
s
 i
n
 t
h
e

L
o
g
a
ri
th

m
ic

 s
c
a
le

Figure 4. Count of signature changes of functions in the
Subversion project. The x-axis indicates the number of
signature changes, and the y-axis indicates the number of
functions (log scale).

6. SIGNATURE EVOLUTION PATH
We wondered whether common signature evolution paths could
be used to predict future software changes. For example, we

Function Client
Arg

R

67

might detect that the most common signature changes occurred in
this order: parameter addition (A), parameter deletion (D),
ordering change (O), return type change (R), and parameter
addition (A). In the future, when a known signature change
evolution sequence occurred, such as A, D, O and R, we could
predict the next signature change is likely to be a parameter
addition (A).
To determine whether or not such common evolutionary paths
exist, we noted all signature change evolution sequences. For
example, when the signature of a function changes in this order:
A, D, O, R, and A (See Table 3 for the change pattern
abbreviations), we generate a change sequence, ‘ADORA’. We
examined all signature change sequences whose length is larger
than three. We assumed that change sequences with fewer than
four changes are rarely associated with common evolution paths.
After having an array of the sequences, we looked for the most
common sequence (MCS) patterns using a modified longest
common sequence (LCS) search algorithm [7]. Table 6 shows the
top five common sequences of the Subversion project and overall
eight projects. The occurrence shows how many times we found
the change sequence patterns over all patterns, and percentage
shows how common each occurrence is as a fraction of all
observed occurrences (1,428 for the Subversion project and 2,025
for overall). We need to determine the conditional probabilities of
each change kind to see if it depends on previous changes, and
that the dependency rate is high enough to predict future change
kinds. We weren’t able to find predictable evolution paths from
common sequences.

Table 6. The top five common function signature change
pattern sequences of the Subversion project and across all
projects. # means the count of occurrences of the pattern,

and % means the percentage of times this sequence occurs.
Subversion Project Overall projects

Common
Sequence # % Common

Sequence # %

ACDA 186 13% AADA 198 9%
AADA 183 12% ACDA 186 9%
AACD 159 11% ADDD 171 8%
ADDD 152 10% AACD 159 7%
ACAA 133 9% ADAD 141 6%

7. THREATS TO VALIDITY
The results presented in this paper are based on selected eight
open source projects. It includes major open source projects, but
other open source or commercial software projects may not have
the same properties we presented here. We analyzed only projects
written in the C programming language; software written in other
programming languages may have different signature change
patterns. Some open source projects have revisions that are not
compilable and contain syntactically invalid source code. In that
case, we had to guess at the signatures or skip the invalid parts of
the code. We ignored ‘#ifdef’ statements because we cannot
determine the real definition value; ignoring ‘#ifdef’ caused us to
add some extra signatures which will not be compiled in the real
program.

8. CONCLUSIONS AND FUTURE WORK
We have introduced a fine-grain taxonomy of signature change
kinds. Among change kinds, the common change kinds are
parameter addition (52.13%), complex type change (30.5%) and

parameter deletion (22.75%). In future work we hope to this result
can be used to alleviate signature change impact. If we can
provide an ontological framework that includes a conceptual
meaning for each parameter with its data type, it is possible to
accommodate ordering changes and parameter deletion changes
by generating glue code that resolves the signature mismatch
problem. We found that about 77% of functions never change
their signature and another 23% of functions change their
signature once or twice.

We used a function name as an identifier to keep track of
signature changes. Unfortunately, this means that if a function
name changes, we loose its previous history of signature changes.
The C++ and Java programming languages allow method
overloading – more than one method with the same name but
different parameters. When groups of overloaded methods evolve,
sometimes ambiguity prevented us from determining which old
method changed to which new method. Tu et al. introduced an
origin analysis algorithm to find the origins of new procedures or
files [8]. Origin analysis helps to find evolution paths when
function names are changed or methods are overloaded. However,
origin analysis requires heavy computation for entity analysis and
dependency analysis. Providing more accurate results using origin
analysis remains future work.

About 55% of parameters are complex data types such as
structures, unions, or classes. Even though the signature remains
unchanged, when a complex data type has changed internally,
such as the addition of a member variable, it should be regarded
as a signature change. Monitoring changes to each complex data
type used in a signature to observe this kind of change remains
future work.

Finally, further study is needed to explore the correlations
between signature evolution and whole system evolution.

9. ACKNOWLEDGMENTS
Thank you to Mark Slater, and the anonymous reviewers for their
valuable feedback on this paper. Work on this project is supported
by Samsung Electronics, NSF Grant CCR-01234603, and a
Cooperative Agreement with NASA Ames Research Center.

10. REFERENCES
[1] M. M. Lehman, "Rules and Tools for Software Evolution Planning and

Management," Proc. Int'l Workshop on Feedback and Evolution in
Software and Business Processes (FEAST 2000), Imperial College,
London, July 10-12, 2000.

[2] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, "Change
Impact Identification in Object Oriented Software Maintenance," Proc. the
Int'l Conf. on Software Maintenance, Victoria, Canada, 1994, pp. 202-211.

[3] S. Counsell, et al., "Trends in Java code changes: the key to identification
of refactorings?" Proc. 2nd Int'l Conf. on Principles and Practice of
Programming in Java, Kilkenny City, Ireland, 2003, pp. 45 - 48.

[4] J. Bevan, "Kenyon Project Homepage," 2005 http://kenyon.dforge.cse.ucsc.edu
[5] B. Behlendorf et al., "Subversion Project Homepage," 2005

http://subversion.tigris.org/
[6] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data for Fine-

Grained Analysis," Proc. MSR 2004, Edinburgh, Scotland, 2004, pp. 2-6.
[7] D. S. Hirschberg, "Algorithms for the Longest Common Subsequence

Problem," Journal of the ACM (JACM), vol. 24, no. 4, pp. 664 - 675, 1977.
[8] Q. Tu and M. W. Godfrey, "An Integrated Approach for Studying

Architectural Evolution," Proc. Intl. Workshop on Program
Comprehension (IWPC 2002), Paris, June, 2002, pp. 127.

68

Improving Evolvability through Refactoring

Jacek Ratzinger, Michael Fischer
Vienna University of Technology
Institute of Information Systems

A-1040 Vienna, Austria

{ratzinger,fischer}@infosys.tuwien.ac.at

Harald Gall
University of Zurich

Department of Informatics
CH-8057 Zurich, Switzerland

gall@ifi.unizh.ch

ABSTRACT
Refactoring is one means of improving the structure of exist-
ing software. Locations for the application of refactoring are
often based on subjective perceptions such as ”bad smells”,
which are vague suspicions of design shortcomings. We ex-
ploit historical data extracted from repositories such as CVS
and focus on change couplings: if some software parts change
at the same time very often over several releases, this data
can be used to point to candidates for refactoring. We adopt
the concept of bad smells and provide additional change
smells. Such a smell is hardly visible in the code, but easy
to spot when viewing the change history. Our approach
enables the detection of such smells allowing an engineer
to apply refactoring on these parts of the source code to
improve the evolvability of the software. For that, we ana-
lyzed the history of a large industrial system for a period of
15 months, proposed spots for refactorings based on change
couplings, and performed them with the developers. After
observing the system for another 15 months we finally ana-
lyzed the effectiveness of our approach. Our results support
our hypothesis that the combination of change dependency
analysis and refactoring is applicable and effective.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance and Enhance-
ment—restructuring, reengineering ; D.2.8 [Software En-
gineering]: Metrics—complexity measures, evolution mea-
sures

Keywords
software evolution, refactoring, change smells

1. INTRODUCTION
The notion of ”bad smells” was introduced by Fowler [4] and
describes a vague suspicion that the software contains design
deficiencies that should be restructured. Our research ques-
tion is: Are there data sources other than source code to
identify such kinds of smells for refactorings? We address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.MSR’05, May 17, 2005, Saint Louis, Missouri,
USA Copyright 2005 ACM 1-59593-123-6/05/0005...5.00

this question by exploiting change history data of software
and analyze them to identify smells and, as a consequence,
hot-spots for refactoring. We utilze our visualization ap-
proach of change couplings to help software engineers to
locate places that deserve design improvements.

Furthermore, we then apply appropriate refactorings to the
identified software parts and again observe the evolution for
a period of release. Then at some point we again investigate
the change history to see whether the initially suggested
and implemented refactorings were effective with respect to
change couplings. We can positively answer the question
of effectiveness, if the refactored software keeps that status
over the observed post-refactoring releases. As a result, we
derive that, given the refactored structure does not again
show high change couplings, these hot-spots were the right
places to apply refactorings.

To evaluate our approach, we used a 500 000 lines of code
(LOC) industrial Picture Archiving and Communication Sys-
tem (PACS) written in Java and observed it twice for a pe-
riod of 15 months, with a change coupling driven refactoring
between the two observation periods. The results show that
change couplings point to highly relevant refactoring candi-
dates in the code and that after refactoring the code has a
low change coupling characteristics, which means that the
refactorings were successful.

The origins of this work are our previous results described
in [5], in which we concentrated on the measuring of soft-
ware dependencies: Common change behavior of modules
to be discovered on a macro level exploiting information
such as version numbers and change reports. Source code
control systems such as CVS provide necessary information
about change requests and usually also about the change
implementation, as the developer can use such systems for
documentation purpose [3]. Thus, hidden dependencies not
evident in the source code can be revealed. Such common
change behavior of different parts of the system during the
evolution is referred to as logical or change coupling. As a
result, change couplings often point to structural weaknesses
that should be subject to reengineering.

We propose to use refactoring based on change smells de-
tected with the help of mining source code repositories. We
extend the concept of ”bad smells” introduced by Fowler to
change smells, as some structural weaknesses are not evident
in the code but in the software history. When developers

69

have to change some system part they often work on several
files containing source code. Sometimes the dependencies
are not easily detectable within the source code, e.g. when
similar patterns or clones of source code are used but for
different functionality. Nevertheless, in such a situation the
engineer has to consider all the involved files to keep the con-
sistency of the entire system. After detecting change smells
and its cause, we suggest certain refactorings to improve the
software.

The remainder of the paper is organized as follows: In Sec-
tion 2 we present two of our changes smells that are relevant
for this paper. Next, in Section 3 we describe our industrial
case study. In Section 4, we describe the core contribution
of this paper, the change smell guided refactoring using ex-
amples from the case study. Section 5 positions our work in
relation to other works, and in Section 6 we draw conclu-
sions.

2. CHANGE SMELLS
Software often encloses change smells. These are spots in
the system, which do not evolve smoothly but cause changes
through a long period in the development process. To im-
prove the development effort, we need decision support where
to apply restructuring. Fortunately, most development teams
collect historical data about the product’s life cycle as they
use software configuration management systems such as the
Concurrent Versions System (CVS).

Refactoring is a vital technique to improve the design of ex-
isting systems by changing a software system in such a way
that the external behavior of the code is not changed yet the
internal structure is improved. It is an activity that accom-
panies all phases of the software life cycle. Many different
refactorings have already been identified [4]. When applying
refactorings on detected change smells we can demonstrate
how the evolvability of software improves.

As CVS logs every action, it provides the necessary infor-
mation about the history of a system. The log-information
is pure textual, human readable information and retrieved
via standard command line tools, parsed and stored in a
relational database. Following the import of the logs, the
required evolutionary information is reconstructed in a post
processing phase. Log groups Ln are sets of files which were
checked-in into the CVS by a single author within a short
time-frame—typically a few minutes. The degree of logical
coupling between two entities a, b can be determined easily
by counting all log groups which both a and b are members
of, i.e., C = {〈a, b〉|a, b ∈ Ln} is the set of logical coupling
and |C| is the degree of coupling.

We define change coupling (or logical coupling) as follows:
Two entities (e.g. files) are logically coupled if modifications
affect both entities over a significant number of releases. An
interesting aspect of coupling is the distinction between in-
ternal and external. We define internal coupling as a de-
pendency that happens between classes in respective parts
of the system; e.g. the relations between classes of a single
module and its submodules are defined as internal couplings.
The couplings between classes within this module and any
other part of the software (i.e. another module or another
subsystem) are considered as external couplings.

In addition to Fowler’s ”bad smells”, we investigate two
change coupling smells in this paper:

Man-in-the-Middle: A central class evolves together with
many others that are scattered over many modules of the
system. Thus, we detect change couplings between the cen-
tral class and the related ones; these related classes often
exhibit change couplings among each other as well. A Man-
in-the-Middle smell hinders the evolution of single modules,
because of the strong dependencies to other parts of the
system. The central class does not necessarily contain much
code. We detected that it is just a class, which represents
a kind of a mediator for many other classes or even other
modules and has to be changed often if other parts of the
software change. Refactorings such as Move Method and
Move Field can repair such a smell. Then the functional-
ity can be pulled to the data and slim interfaces may be
introduced.

Data Container: This smell is similar to the data contain-
ers defined in the ”Move Behavior Close to Data” reengi-
neering pattern of Demeyer et al. [1] that defines data con-
tainers as ”classes defining mostly public accessor methods
and few behavior methods (e.g., the number of methods
is approximately two times larger than the number of at-
tributes)”. The difference is that in our change smell Data
Container two classes make up the smell instead of a sin-
gle one. One class holds all the necessary data whereas the
second class interacts with other classes implementing func-
tionality related to the data of the first class. This violates
the principle of encapsulating data and their related func-
tions. In our case, when two classes have common change
patterns we should check for the reason. We detected situa-
tions where the change smell of Data Container was respon-
sible for the unintended evolution of the software. This smell
is detectable within the visualization when we encounter two
classes, which have a strong change relation conneting them
and additionally a net of other classes surround these two
classes with weaker coupling. Usually, both the data con-
tainer and the class with the interaction methods are re-
lated with each of the other classes. Hence, we obtain a lot
of triangular relationships. The refactorings Move Method
and Extract Method should be used to enrich the Data Con-
tainer with behavior operating on the data and to combine
the two classes into one. The aim of the improvement is
that the data is well encapsulated.

3. CASE STUDY
A Picture Archiving and Communication System (PACS)
was selected as case study for our approach. The PACS
includes a viewing workstation, which supports concurrent
displaying of pictures as well as an archive. The images are
acquired from different modalities like magnetic resonance,
or ultrasound scanning and save in distributed archive stor-
ages. The software is implemented in Java. The information
of the whole application is maintained with the help of CVS.

All subsystems of the PACS can be viewed as separate projects
that encapsulate some aspects of the whole application such
as viewing unit, archiving process or extensions to the view-
ing unit. These extensions add diagnostic features to the
viewing application. The case study is composed of 35 sub-
systems, each containing between one and fourteen modules.

70

Single classes represent the lowest level of decomposition.
The history of the PACS system was inspected over a pe-
riod 30 months. During this time the software grew from
approximately 2000 to more than 5500 classes. At the end
it was composed of over 500 000 LOC. Regarding these sim-
ple numbers the system seems quite well designed, as each
class has less than 100 lines of code on the average.

4. CHANGE SMELL BASED REFACTOR-
ING

In this section we present an example from the case study,
where we detect change smells and use refactorings to im-
prove the evolvability of the software. During the analy-
sis of the historical data received from CVS we identify a
small module (i.e. Java package) with a high changing ac-
tivity. So we calculate the logical couplings of this module
called jvision/workers. To get a better understanding of log-
ical couplings for the classes of jvision/workers we create a
graphical representation (see Figure 1).

In this representation classes are depicted as small ellipses.
The ellipses are grouped by their membership to modules.
Modules themselves are depicted as bounding ellipses sur-
rounding their classes. This structural information is en-
riched with historical data. From CVS we extract the evolu-
tion of classes and calculate logical coupling between classes.
This coupling is depicted in Figure 1 through edges connect-
ing the ellipses whereas the thickness of the edges describes
the ”strength” of the visualized couplings. The more often
a pair of classes is changed at the same time the thicker
is the representing edge. This visualization approach has
been extended with class based metrics and implemented in
EvoLens.

The navigation through the change couplings based on our
visualization approach helps to locate the change smell Man-
in-the-middle for the class ImageFetcher. This class has
multiple strong logical couplings with other classes. The
situation is even worse as it often changes together with
classes of different packages. Thus, when a change has to
be done by an engineer the editing is scattered over the
software.

ImageFetcher is one of the largest classes of the entire sys-
tem; it contains almost 2000 lines of code. The methods
of this class are of exceptional length: Some of them con-
tain more than 100 lines of code. When trying to reveal the
reasons for such ”spaghetti code”, we discover that many
methods are similar. Thus, the entire class is internally
redundant. The length of the class itself does not automat-
ically lead to the necessity of refactoring, but ImageFetcher
often changes together with other classes. Thus, each change
has to be thoroughly analysed in order not to miss any im-
portant change, which may be scattered over a large part of
the system. This has a severe impact on the maintenance
effort: When a bug is discovered within one of the methods
of this class, many other methods have to be changed in a
similar way. Often such changes are missed and have to be
fixed later when the bug reoccurs. This results in a high
changing activity.

Additionally, this class seems to have divergent changes [4],
because it changes together with a lot of classes of other

Figure 1: Change smell: Man-in-the-Middle

modules. Thus some methods seem stronger related with
classes of a particular module, whereas other methods of Im-
ageFetcher have to be changed in conjunction with classes
of other modules. When inspecting the source of the Im-
ageFetcher we determine that the principle of separation of
concerns is violated. This class implements a thread pool,
a queue for work items, and logic for loading images alto-
gether. As a result, different classes implementing different
functionality are related with ImageFetcher.

4.1 Refactoring to improve Evolvability
We apply several refactorings to reduce the weaknesses of
this change smell. Then we continue to observe the evolution
of the module jvision/workers to see if the evolvability has
been improved through evolution guided refactoring.

To minimize code duplication, we first extract code clone
parts of methods and reuse the newly formed methods where
appropriate. For that, we apply the Extract Method refac-
toring that helps to get reusable items. After these improve-
ments the class contains just 1100 lines of code, because of
the removal of duplication.

To further improve the evolvability, we split ImageFetcher
into new classes encapsulating the different concerns. We
move the methods and data for image loading into a sepa-
rate class called FetchWorker. The logics for thread pooling
and the handling of the work queue are left together in Im-
ageFetcher. After the movements we obtain a surprising
result: FetchWorker contains just one public method called
loadimage(). This simple interface results in reduced cou-
pling. Also ImageFetcher has a simple interface after the

71

Figure 2: Evolution after refactoring of change smell

refactorings. It provides methods for starting and stopping
the thread pool and for adding orders to load certain images
into the work queue.

4.2 Evolution after Refactoring Change Smells
After our refactorings, we observe the software again for 15
months, which is exactly the period we analyzed the system
before the refactoring. We inspecte the system for such a
long period to gain more accurate assessments. Fig. 2 de-
scribes the change couplings of module jvision/workers after
the refactorings, in contrast to Fig. 1 that presents the logi-
cal couplings, which are used as trigger for the refactorings.
In Fig. 1 we observe the system from January 2002 until
March 2003. At the end of March 2003 we refactor Image-
Fetcher and Fig. 2 represents the development from April
2003 until June 2004.

During the second 15 months the development of the mod-
ule jvision/workers continued on a high level. A lot of
functionality was added and improved. As a result new
classes such as VisualWorker, VisualWorkerData, VolVisu-
alWorkerData, and HiSpdFetcher were added during this
time. However, Figuer 2 exhibits no strong logical coupling
for the classes of module jvision/workers. Thus, several
classes are changed during the second observation period,
but not even two classes have been changed more than six
times together. The refactored classes ImageFetcher and
FetchWorker have fewer then 4 common changes with other
classes. The external coupling to other classes can be re-
duced significantly. When asking developers for the reason
of this evolution, they stated that the interfaces of the new
classes were now much clearer and the classes could be de-
veloped more individually. As a result of the refactoring
based on change couplings we can improve the structure of
evolutionary hot spots and the evolvability of the software
system.

Fig. 2 contains a web of logical couplings within module jvi-
sion/workers. Especially, ImageFetcher is connected with
many other classes. One of these classes is the newly refac-
tored class FetchWorker. These two classes have been changed
together twice. Thus, the absolute level is low. What about
the entire web of connected classes? Many of the involved
classes provide different load strategies to ImageFetcher, but
they are not organized in a well-designed inheritance hier-
archy. Therefore, we need a second refactoring step to build
up an inheritance hierarchy for different image loading ap-
proaches. Again, this situation can be detected with the
help of change couplings.

4.3 Tool Support
We provide some techniques for the improvement of soft-
ware structures to facilitate further improvements and bug
fixes during the software evolution. Therefore, we utilize the
history data to find change smells that should be refactored.
A visualization of the large amount of historical data of a
system, which can be extracted from software repositories
such as CVS, enables to spot change smells more easily.

Hence, we implemented a tool for the visualization of evo-
lution data such as change couplings [11]. This tool, called
EvoLens, parses log files of CVS and calculates change cou-
plings between classes based on their common change behav-
ior. The couplings are then visualized together with struc-
tural information. Our EvoLens tool provides the capability
to navigate easily through structure and time. For every se-
lectable software part and every period in the system’s his-
tory, EvoLens can show the internal and external couplings
of the system. Additionally, growth metrics of classes are
also visualized with EvoLens to help assessing the necessity
of reengineering.

5. RELATED WORK
Software metrics, provide a key to measure and improve the
quality of software [2]. Long-term empirical studies show
potential in identifying phases in the life cycle of software
where different activities need to be taken to stabilize the
process. By focusing on the types of changes, costs and
efforts to evolve, Kemerer and Slaughter [8] suggest that fu-
ture trends within a particular system are predictable. How-
ever, the authors concentrated on the historical development
of the software without the stronger relation with the in-
ternal structure of the system. Hence, other metrics like
cohesion and coupling could be incorporated to round up
the approach. Stevens et al. [13], who first introduced cou-
pling in the context of structured development techniques,
define coupling as ”the measure of the strength of associ-
ation established by a connection from one module to an-
other.” Coupling measures are often based on source code.
Nevertheless, different modules of a system may be strongly
related to each other although this relationship is not easily
detectable in the source code. In such a situation historical
data can help to get better results (for example [15]).

Simon et al. [12] postulate that refactoring should be re-
garded as a key issue to increase internal software quality.
Their approach demonstrates how to use cohesion metrics
based on generic distance measures to identify, which soft-
ware elements are closely related and should therefore be
assembled in object-oriented entities. Source code inspec-

72

tions are another field where code smells have to be evalu-
tated. jCOSMO [14] was developed to automatically detect
code smells such as the ones defined by Fowler [4] and to
visualize their distribution over the system.

Complementing to our approach in which we correct hot
spots in the evolution of software systems, also the risk of a
change to break an already existing feature can be assessed
by analyzing software changes [9]. Ostrand et al. [10] predict
the quality of certain parts of software. They estimate the
number of faults per file for the next release based on a
negative binomial regression model using information from
previous releases. Additionally to source code repositories
several other information sources such as mail messages and
defect reports can by explored to get a better understanding
how a software product has evolved since its conception [6].
In [7] four different kinds of studies for software evolution are
presented and compared. The studies consider long-running
observations of growth and evolution as well as fine grained
issues like code cloning and software architectures.

6. CONCLUSIONS
We have shown an approach to exploit historical data ex-
tracted from repositories such as CVS in terms of change
couplings: We adopted the concept of ”bad smells” and
provided additional change smells based on change coupling
analysis. Such a smell is hardly visible in the code, but easy
to spot when viewing the change history.

Based on these change couplings and the proposed change
smells, the developer obtains support where to apply refac-
torings efficiently. In an industrial case study comprised
of 500 000 LOC in Java, we have shown how these change
smells can be cured and how refactoring can be based on
them. It turned out that after the refactorings had been
implemented, the evolution of the system, that we observed
for another 15 months, was facilitated and did not lead to
the originally strong change couplings or change smells. In
talking to the developers, they stated that the directed refac-
torings were effective for them and the new interfaces and
classes were much clearer and easier to use.

From this we conclude, that such an approach can help in
improving the maintainability and evolvability of a large
software system. The change coupling data itself to get
is rather straightforward, as are the two described change
smells Man-in-the-Middle and Data Container.

Our prototype tool EvoLens integrates many of these con-
cepts already but it will be enhanced to better deal with
change smells in the future. The next steps will further in-
vestigate change smells and their curing with appropriate
refactorings.

7. ACKNOWLEDGMENTS
We thank Tiani Medgraph, our industrial partner, which
provided the case study and helped us with the interpreta-
tion of the results. The work described in this paper was
supported by the Austrian Ministry for Infrastructure, In-
novation and Technology (BMVIT), The Austrian Indus-
trial Research Promotion Fund (FFF), and the European
Commission in terms of the EUREKA 2023/ITEA project
FAMILIES (http://www.infosys.tuwien.ac.at/Cafe/).

8. REFERENCES
[1] S. Demeyer, S. Ducasse, and O. Nierstrasz.

Object-oriented Reengineering Patterns. Morgan
Kaufmann Publishers, An Imprint of Elsevier
Scienence: San Francisco CA, USA, July 2002.

[2] S. Demeyer and T. Mens. Evolution metrics. Proc. of
the 4th Int. Workshop on Principles of Software
Evolution, pages 83–86, 2001. Session 4A: Principles.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. Proc. Int. Conf. on Software
Maintenance, pages 23–32, September 2003.

[4] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, June 1999.

[5] H. Gall, J. Krajewski, and M. Jazayeri. CVS Release
History Data for Detecting Logical Couplings. In
Proc. 6th Int. Workshop on Principles of Software
Evolution, pages 13–23. IEEE Computer Society
Press, September 2003.

[6] D. M. German, A. Hindle, and N. Jordan. Visualizing
the evolution of software using softchange. Proc. 16th
Int. Conf. on Software Engineering and Knowledge
Engineering, pages 336–341, June 2004.

[7] M. Godfrey, X. Dong, C. Kapser, and L. Zou. Four
interesting ways in which history can teach us about
software. Int. Workshop on Mining Software
Repositories, May 2004.

[8] C. F. Kemerer and S. A. Slaughter. An empirical
approach to studying software evolution. IEEE
Transactions on Software Engineering, 25(4):493–509,
July-August 1999.

[9] A. Mockus and D. M. Weiss. Predicting risk of
software changes. Bell Labs Technical Journal,
5(2):169–180, April-June 2000.

[10] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where
the bugs are. Proc. on the Int. Symposium on Software
Testing and Analysis, pages 86–96, July 2004.

[11] J. Ratzinger, M. Fischer, and H. Gall. Evolens:
Lens-view visualizations of evolution data. Technical
Report: Vienna University of Technology, December
2004.

[12] F. Simon, F. Steinbrückner, and C. Lewernetz.
Metrics based refactoring. Proc. European Conf. on
Software Maintenance and Reengineering, pages
30–38, March 2001.

[13] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design. IBM Systems Journal,
13(2):115–139, May 1974.

[14] E. van Emden and L. Moonen. Java quality assurance
by detecting code smells. Proc. of the 9th Working
Conf. on Reverse Engineering, pages 97–108, October
2002.

[15] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. Proc. Int. Conf. on Software Engineering,
pages 563–572, May 2004.

73

Linear Predictive Coding and Cepstrum coefficients for
mining time variant information from software repositories

Giuliano Antoniol
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

antoniol@ieee.org

Vincenzo Fabio Rollo
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

f.rollo@unisannio.it

Gabriele Venturi
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

venturi@unisannio.it

ABSTRACT
This paper presents an approach to recover time variant
information from software repositories. It is widely accepted that
software evolves due to factors such as defect removal, market
opportunity or adding new features. Software evolution details are
stored in software repositories which often contain the changes
history. On the other hand there is a lack of approaches,
technologies and methods to efficiently extract and represent time
dependent information. Disciplines such as signal and image
processing or speech recognition adopt frequency domain
representations to mitigate differences of signals evolving in time.
Inspired by time-frequency duality, this paper proposes the use of
Linear Predictive Coding (LPC) and Cepstrum coefficients to
model time varying software artifact histories. LPC or Cepstrum
allow obtaining very compact representations with linear
complexity. These representations can be used to highlight
components and artifacts evolved in the same way or with very
similar evolution patterns. To assess the proposed approach we
applied LPC and Cepstral analysis to 211 Linux kernel releases
(i.e., from 1.0 to 1.3.100), to identify files with very similar size
histories. The approach, the preliminary results and the lesson
learned are presented in this paper.

Keywords
Software evolution, data mining.

1. INTRODUCTION
An intrinsic property of software is malleability: Software systems
change and evolve at each and every level of abstraction and
implementation during their entire life span from inception to
phase out. This fact, calls for approaches, methods, and
technologies to study evolution of software characteristics during
the system life.

The evolution of a software system is observable as changes in
structural information (e.g. modular decomposition and relation
between modules), behavioral information (e.g. functionalities, or
bugs), and project information (e.g., maintenance effort). As these
changes happen in time, software evolution can be modelled and
studied as time series. A time series is a collection of measures
recorded over time. Time series and time series based approaches
haves been successfully applied to many disciplines such as
speech processing, computer vision, or stock market forecasting.
Common to these disciplines is the need to detect the occurrence
of similar phenomena evolutions over time. Therefore models and
technologies developed to study time series and time dependant
phenomena or signals can be applied to software engineering.

In applying time dependant models to software artifacts evolution
our goal is the definition of a criterion to establish similarity or
dissimilarity of artifact histories. Indeed, similarity is quite a
crucial issue: there are several software engineering areas such as
software evolution and maintenance, software analysis, software
testing, or automatic Web Services composition where the ability
to effectively compute a similarity between artifact histories can
greatly help researchers and practitioners.

On the other hand, similarity computation is a difficult problem.
Often, similarity discovering is hampered by the presence of some
distortion in one dimension of data (e.g., time). This distortion
can cause dissimilar instances seem similar and the opposite as
well.

As an example, effort prediction in software development or
maintenance requires both effort prediction and effort distribution
forecasting (i.e, schedule) [9]. Traditional approaches focus on
effort prediction assuming a relation, often linear [14], between
metrics related to complexity and/or size and the effort [1] [2] [3]
[10]. Often a simple figure quantifying the effort doesn’t suffice.
Effort distribution over time is a key issue for project planning
and staffing, therefore is an important cost driver and a cause of
organizational disruption.

Unfortunately, effort distribution forecasting is more difficult than
effort prediction because discovering similarities between past
projects effort distributions is hampered by several factors causing
‘distortion’ in the data if represented as evolving in a linear time.

While the overall effort in past maintenance projects is mainly
related to high level software metrics [6][14], the effort
distribution is determined by internal system dependencies and
organizational issues. Internal system dependencies can easily
induce ripple effects imposing constraints between activities, a

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MSR'05, May 17, 2005, Saint Louis, Missouri, USA Copyright
2005 ACM 1-59593-123-6/05/0005...$5.00

74

component must be changed after some other has undergone
maintenance. Organizational issues like holydays, staffing
decisions, reorganizations, and so on, can cause postponing of
activities and impact on the effort distribution in an unpredictable
way. Therefore, analysing past effort distribution to determine
similarities among time histories can be a difficult task, since
similarities among activities are hidden because of these factors,
while spurious similarities can emerge for the same reason. In
other words, automating similarity computation between artifact
histories is a challenging and difficult task. Similar difficulties are
present in other software engineering activities such as log file or
user behaviour analysis.

The above example outlines the usefulness of robust similarity
detection approaches, robust when the original data are distorted
in time.

We present an approach to detect similarities between artifacts
histories. In particular we aim at devising an approach to detect
similarities in evolutions starting from past maintenance and
activities effects, notwithstanding their temporal distortions.
Theories and technologies to detect similarities in phenomena
evolving in time, in a manner that the time rate can change among
instances and also during a single instance are present in
literature. In this work we applied one of these, namely
LPC/Cepstrum, to mine from a repository of Linux kernel
modules, files evolved in the same or very similar ways.

The remainder of this paper is organized as follow: first we
present the background of the used approach, Case study and
results section illustrate the application of the approach to the
Linux kernel evolution data, and in Discussion and future works
we debate about our results and indicate our future work
guidelines

.

2. TACKLING TIME RATE CHANGES
Automatic speech recognition and speech synthesis researchers
have a long history of wrestling with time distortion. Human
beings change the rate of speech when talking (prosody), but
humans recognize words also in presence of dramatic changes in
pronunciation speed or accent during locution. When machines
come into play, it is quite obvious expecting from them at least a
similar ability in comprehension. Therefore, a speech recognition
system must be robust with respect to time distortion as well as to
disturbance (noise).

Among the speech recognition approaches the family based on
Linear Predictive Coefficient and Cepstrum (LPC/Cepstrum) is
prominent for its performances and its relative simplicity.
LPC/Cepstrum, first proposed in [7] and subsequently in [12] and
[13], models a time evolving signal as an ordered set of
coefficients representing the signal spectral envelope. That is a
curve passing close to the peaks of the original signal spectrum.
To obtain the LPC/Cepstrum representation the first step is to
compute Linear Predictive Coding (LPC) coefficients. These are
the coefficients of an auto-regressive model minimizing the
difference between linear predictions and actual values in the
given time window.

The LPC analysis uses the autocorrelation method of order p.

In matrix form, we have

where

r = [r(1)r(2)..r(p)]T

is the autocorrelation vector,

is the filter coefficients vector and R is the p*p Toeplitz
autocorrelation matrix, which is nonsingular and gives the
solution

Once LPC have been obtained it is possible to compute cepstra
from them. Cepstra are the coefficients of the inverse Fourier
transform representation of the log magnitude of the spectrum.
The cepstra series represents a progressive approximation of the
‘envelope’ of the signal: as for LPC, the more are the cepstra
considered the more the envelope adheres to the original
spectrum.

Starting from a and r, we have as cm coefficients (for order p):

for 1 < m < p, and

where m > p.

In speech recognition LPC/Cepstrum has been proven capturing
most of the relevant information contained in the original series.
For a sequence of 30-300 points a number of 8-30 coefficients
suffice for most application. Therefore, LPC/Cepstrum allows to
obtain a very synthetic representation of a time evolving
phenomenon. This compact representations can be used to
efficiently compare signals, once a suitable distance measure has
been defined between LPC or Cepstrum coefficients. Most
approaches aiming to assess similarity between time series use the
Euclidean distance among the LPC/Cepstrum representations as
an indirect similarity measure. Although distance and similarity
are different concepts, cepstral distance can be used to assess
series similarity: If two cepstra series are “close”, the original
signals have a similar evolution in time. As an alternative to
Cepstrum and Euclidean distance, it is possible to use the Itakura
distance (a.k.a. Log Likelihood Ratio LLR) [4] that can be
computed directly from LPC.

LPC/Cepstrum has been used also in computer vision and in other
research fields [11]. For examples in [15] LPC/Cepstrum is

75

applied to online signatures verification and Euclidean distance
between LPC/Cepstrum has been used as dissimilarity measure to
cluster ARIMA series modeling electrocardiogram signals [5].

3. CASE STUDY AND RESULTS
We tested the application of LPC/Cepstrum to the evolution of a
real world software system: the Linux kernel. Our goal was to
verify if LPC/Cepstrum can be a starting point to produce
compact representations of software modules evolution while
preserving essential characteristics of the phenomena under study.
In other words, if the spectral based representations could be
applied to identify artifacts having very similar maintenance
evolution histories. Being interested in mining the effect of
maintenance on artefact but also in effort we selected a metric that
is quite commonly recognized as strongly related to maintenance
effort: size measure in LOC. Therefore our initial dataset was
composed by the LOC histories, 211 releases, of 1788 files
composing the Linux kernel from version 1.1.0 to 1.3.100 for 211
releases.

Over this dataset we performed LPC/Cepstrum analysis where the
modules evolution in size was thought of as signals evolving in
time. Once obtained LPC/cepstum coefficients we computed the
distance between each pair of module (that is about one million of
module pairs). A method to be effective must efficiently produce
results, our approach for the 1788 histories requires less than 5
seconds on a Pentium 4 machine at 1.6 GHz. The tools used in
each phase are summarized in Table 1. These are all open source
software integrated together allowing an almost fully automated
analysis.

Table 1: Test case technologies and instruments

Phase Instruments

Extraction of size modules
evolution from CVS repository

Perl scripts

LPC computation C program

Cepstra computation C program

Euclidean distance computation C program

Results classification and graph
plotting

Perl script and
GNUPlot

To produce useful results, a similarity assessment based on an
abstraction and on a distance measure must respond to three
minimal requirements:

a) It has to discriminate among similar histories, allowing
to identify some as similar and some as dissimilar by
applying a threshold (such as the more restrictive the
threshold the less the pairs deemed similar). The
possibility to vary the threshold is important because
similarity research often starts with a blur similarity
definition gaining sharpness in late phases. Therefore it
must be possible to customize similarity detection on
the fly.

b) It has to be sensible to the relative richness of the

information supplied. With less information most items
seem similar, increasing the information used we expect

fine grain dissimilarities to emerge. This is important
because allows researchers to decide the best abstraction
level for the case at hand.

c) It has to respond to some intuitive and meaningful

notion of similarity. Because similarity is not a value in
themselves: similarities discovery is ancillary to other
purposes for which a clear understanding of a similarity
judgment is fundamental.

To address items a) and b) we calculate the sets of files with
indistinguishable time series applying three distance thresholds
(Euclidean distances less that 1*10-3

, 1*10-4 , and 1*10-5) and four
cepstra series lengths (12, 16, 20, 32). Since the more cepstra are
used the more the envelope representation adhere to the original
data, with less cepstra we expect to find more similar pairs and the
opposite as well. The size of 8, 12, and 16, for both the LPC
coefficients and the subsequent cepstra series, is a rule of thumb
in speech coding. However, as this is the first application to
software engineering of LPC/Cepstrum spectral representation, we
decided to try the sizes from 12 to 32 to allow a richer signal
representation. It should be noted that our thresholds are quite
thight because the computed distances among software modules
were far smaller than the ones among words in speech
recognition.

By applying the above defined parameters we obtained Table 2, in
which the number of files pairs deemed indistinguishable over a
given threshold is shown for each combination of threshold value
and cepstra series length.

Table 2. Number of pairs beating the thresholds for cepstra
cardinality.

Cepstra series cardinality
Threshold

12 16 20 32

1*10-3
6045 4049 2897 1605

1*10-4
858 607 440 312

1*10-5
194 163 144 129

Table 2 responds to a) and b): the cardinality of the pairs
considered undistinguishable is sensible to both threshold value
and cepstra series length. These effects can be better appreciated
in Figure 1 and 2 reporting the impacts of thresholds and cepstra
series length, respectively. Notice that both tables have a
logarithmic Y axis thus quite different results are obtained with
different configurations.

76

100

1000

10000

1E-3 1E-4 1E-5

12

16

20

32

Figure 1. Impact of the threshold over the number of pairs
deemed similar (logaritmic).

100

1000

10000

12 16 20 32

1E-3

1E-4

1E-5

Figure 2. Impact of the cepstra series cardinality over the
number of pairs demmed similar (logaritmic).

0

5

10

15

20

25

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

Figure 3. Less similar pair selected with 32 cepstra and a
threshold of 10-5.

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Figure 4. Less similar pair selected with 16 cepstra and a
threshold of 10-5.

0

100

200

300

400

500

600

700

800

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Figure 5. Most similar pair selected with 12 cepstra and a
threshold of 10-2 that is discarded by more restrictive criteria.

To qualitatively assess whether the results of the automated
analysis responds to some intuitive notion of distance and
similarity (item c) we plotted the graphs of pairs classified as
indistinguishable. Here we report three examples chosen to give
an insight of how different configurations impact on distance and
similarity. Figure 3, 4, and 5 report plots of the less similar pair
selected with 32 cepstra and a threshold of 10-5; the less similar
pair selected with 16 cepstra and a threshold of 10-5; and the most
similar pair selected with 12 cepstra and a threshold of 10-3 not
included in the sets selected by the other criteria. Notice that the
Y axis aren’t of the same scale.
The graphs show an appreciable progressive relaxation of the
similarity as far as the cepstra series size is reduced and a less
stringent threshold is applied.

4. DISCUSSION AND FUTURE WORKS
This work presents a case study assessing the suitability of
LPC/Cepstrum to compare software artifacts evolutions.
LPC/Cepstrum allows to obtain a compact representation of
signals with linear complexity and to perform a robust
comparison with respect to signal distortion. Computational
efficiency, output compactness, and robustness are appealing
characteristics for tools supporting software engineering
activities. However, since the approach stems from a different
research field, there is the need to assess its suitability. We
conducted a first case study comparing evolution histories of 1788
Linux files at LOC level. We also defined three success criteria
for the case study. To be deemed interesting for further
explorations, the approach must: allow defining similarity
thresholds, be sensible to the quantity of information used, and
produce results responding to an intuitively understandable notion
of similarity.

Indeed, we found that Euclidean distances computed among
LPC/Cepstrum representations can be used to assess similarity in
a way that is sensible to the richness of the representation and
allows to define effective similarity thresholds. By inspecting
histories we also verified that the sets of similar pairs selected
with our approach respond to an intuitive notion of similar
evolution in size. Therefore, the case study results show that
LPC/Cepstrum is worth of further exploration by software
engineering researchers.

77

An important theoretical issue is left aside from this case study.
Distance measures are often seen and used as indirect similarity
measures under the assumption that closeness between items is
related to their similarity. This is a keystone of spectral
representations use in speech recognition. In this case study we
followed this approach as well. Nevertheless is must be pointed
out that similarity and closeness remain two different concepts.
From a theoretical perspective we believe that a better
clarification of similarity between software artifact histories can
be of great help in software evolution research.

A first further research step will be to apply the same framework
to other software systems. In doing so we aim to gain knowledge
about what are the cepstra containing the most relevant
information, what are the threshold values most suitable for the
various tasks and how the approach performs when metrics other
than size are used. This should allow a broader understand of
LPC/Cepstrum characteristics when applied in software
engineering.

Spectral based representations support also comparisons with
metrics other than Eucliedean distance (e.g. the Itakura distance),
ad allow for further abstracting from data distortion in time (e.g.
by means of time warping [8]). Exploring these alternatives it is
possible to increase the robustness of the approach with respect to
distortion and its flexibility with respect to the distance used.

Finally it is remarkable that LPC/Cepstrum has been successfully
used also in situations in which data are distorted in dimensions
other than time. This suggests the application to software
engineering situation in which data are distorted in other
dimensions as well (e.g. size or effort).

5. REFERENCES
[1] Boehm, B.W. Software Engineering Echonomics. Prentice-
Hall Inc., Englewood Cliffs, N.J., 1981.

[2] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy,
R., and Selby, R. Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0.Annals of Software Engineering.vol. 1,
1987, 57-94.

 [3] Hastings, T.E., and Sajeev, A.S.M. A Vector-Based
Approach to Software Size Measurement and Effort Estimation.
IEEE Transactions on Software Enginnering , vol. 27, no. 4,
2001, 337-350.

[4] Itakura F.,Minimum prediction residual principle applied to
speech recognition, IEEE Trans. Acoustics, Speech, and Signal
Processing . vol.23,pp.67- 72,Feb. 1975

[5] Kalpakis K., Gada D., and Puttagunta V., "Distance Measures
for Effective Clustering of ARIMA Time-Series". In Proc. of the
2001 IEEE International Conference on Data Mining (ICDM'01),
San Jose, CA, November 29-December 2, 2001, pp. 273-280.

[6] Lindvall, M. Monitoring and Measuring the Change-
Prediction Process at Different Granularity Levels: An Empirical
Study. Software Process Improvement and Practice, no. 4, 1998,
3-10.

[7] Markel, J.D. and Gray Jr, A.H. Linear Prediction of Speech.
Springer-Verlag, New York, 1976.

[8] Myers C.S. and Rabiner L.R. A comparative study of several
dynamic time-warping algorithms for connected word recognition.
The Bell System Technical Journal, 60(7):1389-1409, September
1981

[9] Mockus A., Weiss D.M., Zhang P. Understanding and
Predicting effort In Software Projects. Proc. of the 25th
International Conference On Software Engineering, 2003, 274 -
284

[10] Nesi, P. Managing Object Oriented Projects Better, IEEE
Software, vol. 15, no.4. 1998, 50-60.

[11] Oppenheim A.V and Schafer R.W, "From Frequency to
Quefrency: A History of the Cepstrum", IEEE Signal Processing
Magazine, September 2004.

[12] Papamichalis, P.E. Practical Approaches to Speech Coding.
Prentice Hall, Englewood Cliffs, NJ, 1987

[13] Rabiner, L.R. and Juang B.H. Fundamentals of Speech
Recognition. Prentice Hall, Englewood Cliffs, NJ, 1993

[14] Ramil, J.F. Algorithmic Cost Estimation Software Evolution.
Proceding of Int.Conference on Software Engineeringr, Limerick,
Ireland, IEEE CS Press, 2000, 701-703.

[15] Wu, Q.Z., Jou, I.C., Lee, S.Y.,
Online Signature Verification Using LPC Cepstrum and Neural
Networks, IEEE Transactions on Systems, Man, and Cybernetics
(27), No. 1, February 1997, pp. 148-153.

78

 Process and Collaboration

79

Repository Mining and Six Sigma
for Process Improvement

Michael VanHilst
Dept. of Computer Science & Eng.

Florida Atlantic University
Boca Raton, Florida

1 954 661-1473

vanhilst@fau.edu

Pankaj K. Garg
Zee Source

1684 Nightingale Avenue, Suite 201
 Sunnyvale, California

1 408 373-4027

garg@zeesource.net

Christopher Lo
Dept. of Computer Science & Eng.

Florida Atlantic University
Boca Raton, Florida

1 561 346-4749

chrishlo@yahoo.com

ABSTRACT
In this paper, we propose to apply artifact mining in a global
development environment to support measurement based process
management and improvement, such as SEI/CMMI’s GQ(I)M and
Six Sigma’s DMAIC. CMM has its origins in managing large
software projects for the government and emphasizes achieving
expected outcomes. In GQM, organizational goals are identified.
The appropriate questions with corresponding measurements are
defined and collected. Six Sigma has its origins in manufacturing
and emphasizes reducing cost and defects. In DMAIC, a major
component of a Six Sigma approach, sources of waste are
identified. Then changes are made in the process to reduce effort
and increase the quality of the product produced. GQM and Six
Sigma are complementary. Both approaches rely heavily on the
measurement of input and output metrics. Mining development
artifacts can provide usable metrics for the application of DMAIC
and GQM in the software domain.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
software process models.

General Terms
Management, Measurement, Reliability, Theory.

Keywords
Six Sigma, GQM, Process Improvement, Repositories

1. INTRODUCTION
Six Sigma and CMMI are two different approaches to process
improvement that come from different perspectives. The two
approaches are complementary. Combining the strengths of each
approach yields an approach that focuses strongly on continuous
and incremental process improvement while seeking metrics that
are appropriate to the reality of software development. Within
this perspective, we propose that mining artifacts found in large
software repositories can provide useful metrics to support a
program of continuous process improvement. Mining artifact
repositories provides useful process metrics without adding

overhead to the process being observed. Instrumenting artifacts,
rather than people, supports other kinds of process improvement.
While we have not yet put our ideas into practice, in this paper we
explain our reasoning and place the proposal in the context of
recent and historical trends in software and management theory.
In future papers we will describe the experience of putting these
ideas to use in a large software organization.

2. GQM, DMAIC, and Repository Mining
GQM is a disciplined approach to defining and collecting metrics
as part of a software development process improvement program.
Originally developed by Basili’s group at the University of
Maryland, it has since been adopted, slightly modified to GQ(I)M,
as part of the guidelines for the SEI’s CMMI. GQ(I)M stands for
Goal-Question-(Indicator)-Measure. The 10 steps in a GQM
process identify business goals, identify the questions to ask
related to these goals, and measurements that will help answer
them, and create a plan to collect the measurements. The CMMI
and GQM focus on measuring and managing the development
process to predictably and reliably achieve organizational goals.

Six Sigma is a disciplined approach to continuous process
improvement designed to increase customer satisfaction and
profits while reducing defects and cost. The name derives from
the ideal of 3.4 defects per million opportunities. Organizations
with a three sigma level of defects (typical of software) are
candidates for improvement. Beyond six sigma, the investment is
assumed not to be cost effective. Originally developed at
Motorola, it has been popularized by many high profile
companies including Honeywell, GE, 3M, Kodak, DuPont, and
Allied Signal. Today it is widely applied to manufacturing and
service-related processes. A good description of Six Sigma can
be found on the SEI web site [21].

The origins of Six Sigma are instructive for software
development. In 1985, Bill Smith argued that if a product was
found defective and corrected during the production process,
other defects were bound to be missed and found later by the
customer during use of the product. This raised the question, was
the effort to achieve quality really dependent on detecting and
fixing defects, or could quality be achieved by preventing defects
in the first place through manufacturing controls and product
design? Smith’s observation echoes the third of Deming’s 14
points, not to rely on inspection and testing to achieve quality [3].

Six Sigma is an iterative approach based on undertaking a
continuous series of initiatives to improve performance over time.
The process improvement model is called DMAIC, an acronym
for the following 5 steps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR'05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

80

1) Define what is important. What matters to the customer?
2) Measure performance. How are we doing? What

aspects of the process are affecting customer value?
3) Analyze opportunity. What could we be doing better?

What are the variables that affect performance?
4) Improve the process. Plan a strategy for improvement

and test it out.
5) Control the process. Institutionalize practices to sustain

the improvement.

A key concept in Six Sigma is the “big Y”. What is the greatest
gain in measurable customer value (measured on the y-axis), that
can be achieved by an investment (measured on the x-axis) in
process improvement. At the beginning of each initiative iteration
the process is analyzed to find threats to customer satisfaction and
opportunities for improvement. Traditionally, the measurement
part of the process is based on practices of statistical quality
control.

A typical example of the application of Six Sigma might involve
light bulb manufacturing. The measure phase discovers that
recently the variance in the thickness of the glass has been
increasing. Continuation of this trend could lead to breakage in
shipping and higher costs. The source of the variance is identified
(worn machine part, new operator, supplier, etc.) and corrective
action is undertaken.

The strengths and weakness of GQM and DMAIC are
complementary [9]. Implementations of the CMM are sometimes
criticized for emphasizing repeatability over improving
productivity. Six Sigma is sometimes criticized for being
inappropriate for development processes characterized by the
unique intellectual efforts of knowledge workers. DMAIC’s
strength is its focus on continuous process improvement and its
iterative and incremental approach to achieving it. GQM’s
strength is in defining metrics that are appropriate to the business
goals and to the process. In this context, the kind of information
that can be found in software repositories adds value.

Mining software development repositories can be used to detect
weaknesses and identify opportunities to improve the
development process. Repository measurements can be collected
without adding significant process overhead. In the past, there has
been an impediment to using the kind of data that can be collected
and inferred from the mining of software repositories because of
its perceived lack of methodological and statistical rigor.
However, there is an emerging understanding within both the
GQM [16] and Six Sigma [15] communities that this kind of data
yields real value. “In rapidly changing environments, precise
numbers and elaborate statistical analyses are often less valuable
than simpler answers to insightful, well-directed questions” [15].

Moreover, recent theories in process management and process
improvement place greater value on the kinds of knowledge that
can be found by mining development repositories in the pursuit of
process improvement. Theories such as Obsolete Theory [13],
Lean Management [20], Theory of Constraints [7], and Agile
methods teach us to focus more on execution and less on
planning, reduce waste, look for bottlenecks, balance reliable
measures with measures that show value, and embrace change as a
strategic advantage.

The concept of waste in lean manufacturing is attributed to
Toyota’s Taichi Ohno and Shigeo Shingo [17]. Waste is defined
as any activity that consumes resources but delivers no value to
the customer. Defects are a source of waste – once allowed to

occur, they require rework at best, and at worst, lead to less useful
or returned products and unhappy customers. Delay is also a
source of waste, not only from increased development cost, but
also from opportunities missed in the marketplace and in
resources not available to produce more value. In Six Sigma,
Black Belt practitioners achieve their rating through training and
proven experience, where proven experience comes from
achieving measurable reductions in waste.

3. Software Development as Production
Software development in large organizations can often be viewed
as a production process. A typical team develops multiple
variations (possibly variations over time) of a core product. In
[23] software product line development is compared to
manufacturing cars, where the basic car can be varied in terms of
engine, seats, upholstery, etc. (In fact, part of Toyota’s Lean
Manufacturing is the SMED, Single Minute Exchange of Dies,
concept of process retargeting for major variations.) When
software development is viewed as production, features can be
viewed as inventory. In this light, the Extreme Programming
principle of “build the simplest thing” can be seen as a correlate
of Ohno’s concept of Kanban or Just-In-Time inventory. (Test-
first and pair programming correspond to Shingo’s Poka-Yoke or
mistake-proofing, and source inspection, respectively.)

When software development is viewed as a production process, a
valid question becomes, where are the bottlenecks? In software
product line development, bottlenecks can be caused by poor
architecture and code rot, problems with requirements, or linkages
and dependencies between project elements. Inspecting
development artifacts can be an effective aid to identify and
measure potential bottlenecks.

If a project’s change history shows a pattern of recent changes
affecting more than the usual number of sites, an architecture
problem might be indicated. Recent additions could be of a type
that the architecture does not well support. Decreasing
localization of change could also be a sign of code rot – repeated
change over time tends to make code progressively more brittle to
additional modification. In either case, the area of modification
could be a candidate for refactoring.

Analysis of the email or SMS archives could reveal a volume of
messages between developers and the internal customer prior to
progress being made on specific features or requests. This pattern
could indicate a problem with the process of requirements capture
or specification. Further analysis of the types of features involved
and the nature of the misunderstanding would be warranted.

Standard product line domain analysis practices, e.g. [12], are
facilitated by the analysis of artifacts. A pattern of a high
frequency of modification on the same pieces of code across
multiple variants could indicates an opportunity to save effort by
building a code generator to handle the differences [23]. Two
pieces of code that often change together might indicate high
affinity or coupling, while code artifacts that seldom changes
together exhibit the opposite. Code sections that rarely see change
are good candidates for inclusion in the core domain architecture.
Analyses of these types can help build effective architectures that
better support product line and model driven development.

Frequent use of manuals or searching the web may reveal an
opportunity for training on the issues in question. Similarly a
comparison of artifacts between two teams, where one team is

81

consistently more productive than the other, might reveal types of
training that would best aid the less-performing team.

Reducing defects can also be improved through inspection of
process artifacts. Correlating defect reports with prior activities
may indicate opportunities to reduce defects through process
change. By analyzing sequences of behavior, it might be possible
to identify where development shortcuts have been taken.
Leveson’s STAMP model for reliably safe systems assigns the
root cause of system failures to failures in constraints on the
process. Using this model, artifact evaluation could identify
patterns of violating the constraints before they lead to defects in
the product.

As software development organizations mature to CMMI levels 3,
4, and 5, their process artifacts contain more keys for correlation.
Change events refer to change requests, and communications
more often reference specific features, requests, and code. It is
likely that as organizations use and find value in artifact analysis,
properties of the artifacts that enhance their value for analysis will
improve. The process we propose corresponds the CMM level 5
Technology Change Management, but adds specific measurement
practices to drive the process.

4. MINING GLOBAL SOFTWARE
DEVELOPMENT ENVIRONMENTS

In the past, approaches such as DMAIC and GQM have advocated
putting measurement practices in place that collect measurements
to feed the overall method. We think that such instrumentation
approaches suffer from two main drawbacks: (1) they introduce
measurement overheads in the process that can slow the process,
and, more seriously, (2) they reify measurements and their
instrumentations, affecting the behavior of the process and its
participants. In contrast, we advocate that appropriate
measurements be mined from the existing process and product
data.

Fortunately, the existence of global software development
environments (GDE), like SourceForge [22], and Corporate
Source [4,5] and it’s successor SourceShare [24], provide ample
opportunities to collect appropriate data. A GDE provides a
repository for multiple projects in an organization to store all
project information in a single place [11]. Participants create a
new project in a GDE, and subsequently all project
communication (through email or discussion forums), version
control data, and problem report workflows are captured and
maintained in the GDE. We propose that GDEs can be extended
with a DMAIC dashboard to interactively provide required
metrics and analyses.

Since we do not have practical experience with this approach yet,
we give some hypothetical examples of analyses and
measurements that could be usefully mined from GDEs. One of
the main tenets of Six Sigma is to reduce the number of defects
per million opportunities in a product. In the case of software
development, the opportunities for introducing defects are
numerous, ranging from the abstract (error in understanding a
requirement) to concrete (error in a program statement).
Therefore, one category of charts that will be useful addition to
GDE would be running charts of open defects per opportunity,
e.g., open defects per thousand lines of source code. As the lines
of code progress over time, and the defects are opened and closed,
these charts can give a sense of how the process is maturing over
time.

In the spirit of Open Source, a GDE advocates that users (or
customers) of a software project have early and continuous
visibility of the process. Hence, potential users participate in the
email lists for discussions on feature requests and design changes.
These discussions can provide a useful measurement of how
involved are the users in the process? One can measure the
number of emails coming from users versus developers over time.

5. RELATED WORK
5.1 Effort Estimation
Previous works on effort estimation have been focused on the
metrics from the development of an entire system. The AMEffMo
[10] project has shown that it is possible to estimate the amount of
effort that went into four separate projects using the metrics that
was gathered from each project. It should stand to reason that
effort estimations for individual components of a project are also
possible. In an evaluation study performed by Mockus and
Graves [2] they set forth an algorithm that is able to estimate
effort based on the size of a modification request as well as the
type of change requested. It was even stated that if the effort for
each change was known, then the size of the change would be
known. However, the reliability of developer recorded efforts per
module is questionable [8]. Therefore, effort was divided among
all the changes performed within a given period.

Four variables were found to be significant in affecting the effort
estimation model. The number of changes per modification
request, individual developer productivity, the nature of the
changes, and the time difference between the detection of decay
and the request for the change [19]. In addition to these four main
variables, other metrics can be used to measure effort such as the
requirements or specification documents. [14] These were the
major factors in this particular project and may be used as a
starting point for investigating the cause of bottlenecks in a
development process.

5.2 Communication Gap
As email is a viable platform for communication among
developers of a system, these messages may become important
information in understanding the difficulties of developing certain
features or modules of a system. The storing of these email
messages into a database and later mining their contents has been
proven to be possible in the Apache Web server project. Since
these email messages follow a relatively structured format with
information regarding the sender, receiver, date, and subject, these
attributes have been shown to be useable as search variables in a
database query. Furthermore, the dates of these messages may be
matched to the development timeframe of a particular feature in
order to analyze bottlenecks and causes of increased effort during
development. The number of developers who participated in
changes or development can also be found through these
techniques.

In addition to email messages, pools of information are located in
the change logs of a CVS repository. In a study of the CVS
repositories of an open source project, Mozilla and Bugzilla, [6]
the large scale and ongoing nature of the project did not affect the
mining. All that was needed was a time frame for which to
analyze the data. This time frame restriction might also help
narrow down changes performed at the same time as the
development period for a feature or module that is being analyzed.
Usually associated with each ChangeLog is a Bugzilla bug report
which is free formed text written by the developer. These might

82

also indicate where time was spent and what difficulties were
encountered.

6. CONCLUSION
Large repositories of software development artifacts contain a
potential wealth of information about the behavior and
performance of software development processes. This data is
available without adding overhead to the process in question.
Using this knowledge effectively requires an organizational
commitment to change, and a context for asking the right
questions. We believe that the combination of Six Sigma’s
DMAIC and CMMI’s GQ(I)M, provides such a framework. We
have explained the rationale and discussed recent trends in project
management theory that add support to our view. As we are only
now beginning to apply our ideas in an industrial setting, reports
on our experience are left to future publication.

7. REFERENCES
[1] Alonso, O., Gertz. M., and Devanbu, P. “Database

Techniques for the Analysis and Exploration of Software
Repositories” MSR '04: International Workshop on Mining
Software Repositiories, Edinburgh, UK, 2004.
http://www.cs.ucdavis.edu/~devanbu/msr04.pdf

[2] Atkins, D., Ball, T., Graves, T., and Mockus, A. “Using
Version Control Data to Evaluate the Impact of Software
Tools: A Case Study of the Version Editor.” IEEE
Transactions on Software Engineering, 28(7), July 2002,
625-637.
http://www.research.avayalabs.com/user/audris/papers/vedraf
t.pdf

[3] Deming, W.E., Out of the Crisis, MIT Press, Cambridge,
MA, 1986

[4] Dinkelacker, J., Garg, P.K., Miller, R., an d Nelson, D.
“Progressive Open Source.” In Proceedings of the
International Conference on Software Engineering
(ICSE'02). Orlando: ACM Press, 2002, 177-184.
http://lib.hpl.hp.com/techpubs/2001/HPL-2001-233.pdf

[5] Garg, P.K. and Dinkelacker, J. “Applying Open Source
Concepts Within A Corporation.” 1st ICSE International
Workshop on Open Source Software Engineering, Toronto,
Canada, May, 2001.
http://sunarcher.org/jamie/pubs/OpenSourceInCorpEnvs_20
01.pdf

[6] German, D.M. “Mining CVS Repositories: The SoftChange
Experience.” In 1st International Workshop on Mining
Software Repositories. May 2004, 17-21.
http://turingmachine.org/files/papers/2004/dmgmining2004.p
df

[7] Goldratt, E.M. The Goal: A Process of Ongoing
Improvement, 2nd rev. ed. North River Press, 1992.

[8] Graves, T.L. and Mockus, A., “Inferring Change Effort from
Configuration Management Data.” In Metrics 98: Fifth
International Symposium on Software Metrics, Bethesda,
Maryland, November 1998, 267-273.
http://www.research.avayalabs.com/user/audris/papers/effort

[9] Hong, G.Y. and Goh, T.N. “A Comparison of Six Sigma and
GQM Approaches in Software Development.” Journal of Six

Sigma and Competitive Advantage ,1(1), 2004,
http://www.inderscience.com/storage/f125119371042861.pd
f

[10] Huffman Hayes, J., Patel, S., and Zhao, L., “A Metrics-
Based Software Maintenance Effort Model” In Proceedings
of the 8th European Conference on Software Maintenance
and Reengineering, Tampere, Finland, March 2004. pp. 254-
258.
http://selab.netlab.uky.edu/Homepage/csmr_ameffmo_hayes
_2004%5Eas_published.doc

[11] Inoue, K., Garg, P.K., Iida, H., Matsumoto, K. and Torii, K..
“Mega Software Engineering.” Accepted for PROFES 2005,
Finland, June 2005

[12] Jacobson, I., Griss, M.K., and Jonsson, P. Software Reuse:
Architecture, Process, and Organization for Business
Success. Addison-Wesley, Reading, MA, 1997

[13] Koskela, L., and Howell, G. “The Underlying Theory of
Project Management is Obsolete.” In Proceedings of the
PMI Research Conference, 2002, 293-302.
http://www.leanconstruction.org/pdf/ObsoleteTheory.pdf

[14] Lehman, M.M., Perry, D.E., and Ramil, J.F. “Implications of
Evolution Metrics on Software Maintenance.” ICSM'98,
November 1998.
http://www.ece.utexas.edu/~perry/work/papers/feast2.pdf

[15] Martin, R. “Validity vs. Reliability: Implications for
Management.” Rotman Magazine, Winter 2005.
http://www.rotman.utoronto.ca/integrativethinking/ValidityV
SReliability.pdf

[16] Morasca, S., Briand, L.C., Basili, V.R., Weyuker, E.J. and
Zelkowitz, M.V. "Comments on 'Towards a Framework for
Software Measurement Validation'." IEEE Transactions on
Software Engineering, 23(3), March 1997, 187-188

[17] Ohno, T. The Toyota Production System: Beyond Large-
Scale Production. Productivity Press, 1988.

[18] Park, R.E., Goethert, W.B., and Florac, W.A. Goal-Driven
Software Measurement —A Guidebook, Software
Engineering Institute, 1996.
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb00
2.96.pdf

[19] Perpich, J.M., Perry, D.E., Porter, A.A., Votta L.G., and
Wade, M.W. “Anywhere, Anytime Code Inspections: Using
the Web to Remove Inspection Bottlenecks in Large-Scale
Software Development.” 1997 International Software
Engineering Conference (ICSE97), Boston Mass, May 1997.
http://www.ece.utexas.edu/~perry/work/papers/icse97.pdf

[20] Poppendieck, M. and Poppendieck, T. Lean Software
Development: An Agile Toolkit. Addison-Wesley, Reading
MA, 2003.

[21] Siviy, J. “Six Sigma.” Software Engineering Institute, 2001.
http://www.sei.cmu.edu/str/descriptions/sigma6_body.html

[22] http://www.sourceforge.net
[23] Weiss, D. and Lai, C.T.R. Software Product-Line

Engineering: A Family Based Software Development
Process. Addison-Wesley, Boston, MA, 1999

83

Mining Version Histories to Verify the Learning Process of
Legitimate Peripheral Participants

Shih-Kun Huang1,2

skhuang@csie.nctu.edu.tw
Kang-min Liu1

gugod@gugod.org
1Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan
2Institute of Information Science, Academia Sinica, Taipei, Taiwan

ABSTRACT
Since code revisions reflect the extent of human involvement
in the software development process, revision histories re-
veal the interactions and interfaces between developers and
modules.

We therefore divide developers and modules into groups ac-
cording to the revision histories of the open source software
repository, for example, sourceforge.net. To describe the
interactions in the open source development process, we use
a representative model, Legitimate Peripheral Participation
(LPP) [6], to divide developers into groups such as core and
peripheral teams, based on the evolutionary process of learn-
ing behavior.

With the conventional module relationship, we divide mod-
ules into kernel and non-kernel types (such as UI). In the
past, groups of developers and modules have been parti-
tioned naturally with informal criteria. In this work, how-
ever, we propose a developer-module relationship model to
analyze the grouping structures between developers and mod-
ules. Our results show some process cases of relative impor-
tance on the constructed graph of project development. The
graph reveals certain subtle relationships in the interactions
between core and non-core team developers, and the inter-
faces between kernel and non-kernel modules.

Keywords: Legitimate Peripheral Participants(LPP), Open
Boundary, Open Source Software Development Process.

1. INTRODUCTION
Because of the success of Linux, GNU, Apache, and tens
of thousands of open source development (OSD) projects in
sourceforge.net, we review the process of OSD and com-
pare it with conventional approaches to proprietary software
development. Many researchers have explored and tried to
explain the differences between the software processes of
OSD and conventional approaches. Among them, Eric S.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Raymond was the first to publish his findings in the noted
Cathedral and Bazaar [11] model.

Ye and Kishida also proposed an open source software(OSS)
development process model [15]. It is based on the evolving
nature of a community with projects and a learning the-
ory – Legitimate Peripheral Participation (LPP), proposed
by Lave and Wenger [6]. In [15], an OSS project may be
associated with a virtual community, and developers may
play certain roles in both the community and the project.
During the learning process, the role of each member of the
virtual community co-evolves in both the project and the
community.

Few of the criteria of conventional software engineering meth-
ods, which are concerned with process models and control
of schedules, can be applied in open source project develop-
ment. In OSD, developers of a project may work together
without knowing each other and build a successful system
with millions of users worldwide. Although OSD does not
appear to allow complete control and scheduling over soft-
ware, it works well in reality. Besides, OSD projects often
release new versions of software that are comparable to high
quality proprietary software with similar functions. Such
sustainable nature of the OSD process is worth exploring.
However, although OSD has low initial deployment costs,
there may be higher long-term costs.

In our experience, many open source developers do not con-
tribute a great deal to OSD. They only do relatively mi-
nor work, such as fixing non-critical bugs, and do not make
major contributions to the development process. Even so,
although such minor contributors form weak links in devel-
oper networks, they are often a major driving force behind
a project growing larger. This is similar to the small-world
phenomenon.

The project-community evolutionary model, proposed by Ye
and Kishida [15], states that any change of roles in the com-
munity maps to a change of roles in the project. The model
also lists eight possible project roles and states that users, or
peripheral developers, change their roles by learning about
the project in detail, and are therefore central to the project.

In this paper, we propose a quantitative approach to ana-
lyzing the data of open source project development in or-
der to evaluate the role changes of developers in a project.

84

Through this analysis, we verify the learning process of LPP
and provide a quantitative measurement for open source de-
velopment models. The major advantage of our approach
is that it is fully automatic; thus, manual verification is not
required in the middle of the data mining process.

We believe that, in each open source project, there is a large
amount of source code that does not need to be opened; that
is, the success of an open source project depends on only a
small proportion of its code. This would allow commer-
cial developers of software to work with peripheral teams in
the development of products without loosing control of their
source codes.

2. METHODS
We use a similar approach to that of Luis et al [7]. For each
target project, we perform network analysis of its version
control repository. Our main source of data is sourceforge.net,
which provides a full CVS repository archive.

From revision histories, we can construct social network
graphs that represent the relations between developers of
different parts of a project. The evolutionary pattern of a
social network reflects some process features and anomalies
during a project’s evolution. With network analysis meth-
ods, we can measure the relative importance of each devel-
oper, and classify each one’s role.

For each path, p, found in the revision log, we define a de-
veloper set, Dp, for path p (such paths refer to directories
specified in the revision log.) Formally, we define a developer
network graph as follows.

Dp = {d|developer d has modified path p}.

Then, we can define a symmetric developer graph, Gd, as:

Gd = {Vd, Ed}
Vd = {d|d is a developer}
Ed = {(d1, d2)|∃ path p s.t d1 ∈ Dp and d2 ∈ Dp}.

In [7], the affiliation graph group is associated with the
source code modules, while our group is associated with the
directory. Our approach requires relatively less prior knowl-
edge about the source code itself, and is more independent
in terms of programming language; hence, it does not re-
quire human involvement to decide the affiliation group, as
every step can be processed automatically.

We use the following definition in our analysis.

Distance Centrality (Dc) [12] : also called closeness cen-
trality. The higher the value of Dc, the closer the vertices
are to each other. Given a vertex, v, and a graph , G, Dc is
defined as:

Dc(v) =
1P

t∈G dG(v, t)
. (1)

For each project, we first generate the developer social net-
work, then compute the distance centrality of each node.

From the distribution of the centrality values, we can dis-
cover the properties of different stages in the project devel-
opment process.

3. RESULTS AND DISCUSSIONS
Figure 1 shows the developer social network for the project
awstats [3]. Although this is a typical small project with
only three developers, it has been very active according to
sourceforge.net’s records. Its social network is fully con-
nected, which means that all developers co-develop at least
one directory. Project phpmyadmin [9] also has this kind
of developer social network (Figure 2). In such a network, it
is impossible to determine the importance of each developer,
because they all have exactly the same attributes. Hence,
we say that each developer plays the same role in the devel-
opment process.

The above network pattern may reflect a possible flaw in
our analytical method, because grouping developers based
on directories is not detailed enough. However, it is also
possible that the design of the software lacks proper mod-
ularity so that developers cannot modify a feature without
modifying many directories in the source code.

The results of project moodle [8] (Figure 3) demonstrate
another extreme case of social network patterns. A vertex’s
color represents its distance centrality value; the darker the
color, the higher the centrality value. Nodes with the high-
est centrality values are rectangular in shape. The central
portion of a node has only one vertex and all other vertices
connect directly to that vertex. There are very few con-
nections between non-central vertices. Project filezilla [5]
(Figure 4) is another example of this kind of pattern.

Projects with this pattern start with a few developers de-
ciding to work together, and they keep control of the source
code as the project grows bigger. Non-central developers
only make relatively minor contributions.

Nearly all projects with more then 10 developers have the
same social network pattern as project gallery [1] (Figure
5). In such a pattern, only a small group of developers
have a relatively high distance centrality, i.e., they are the
center of the developer relationships; other developers play
peripheral or intermediate roles. Project bzflag [13] (Figure
6) is another example of this kind of pattern.

Such social networks have many distance centrality values,
which reflect many different kinds of project roles. Devel-
opers with high centrality values play important roles (core
members or active developers), while those with lower values
play peripheral roles (peripheral developers or bug fixers.)

Ye and Kishida [15] propose a project-community co-evolution
process model, and define eight different roles in an open
source project: Project Leader, Core Member, Active
Developer, Peripheral Developer, Bug Fixer, Bug
Reporter, Reader, and Passive User. Although, from
the repository mining process, we are unable to associate
each developer with a certain role, we can at least group
developers into two large categories: active developer and
above; and peripheral developer and below.

85

Figure 1: The awstats developer social network

ne0x

glund

lem9

gandon
uid52400

mikebeck
armel

spiggy

swix

korakot

staybyte

uid81396

robbat2

loic1

rabus

uid23515
garvinhicking

nijel

Figure 2: The phpmyadmin developer social net-
work

Figure 3: The moodle developer social network

botg

eddan

thunderw

batagy

doberman_fr

ycfu

zelon

uid46771

xiaowen

romulusrfabienillide

lomsel

Figure 4: The filezilla developer social network

Figure 5: The gallery developer social network

chestal

davidtrowbridgetimriker

atupone

brlcad

larsl

dbrosius

rae

mmu_man

bzflag

jeffm2501

journey

nafees

galkire micahjd

crs23

cyberpi

shkoo

eddienull

trepan

michaelh20

valoche

uid125564

dbw192

dtremenak

cobraa1

bz-akira

cjmandrake

Figure 6: The bzflag developer social network

86

4. RELATED WORK
In 1999, Eric Steven Raymond proposed the community-
based development model in his famous work Cathedral and
Bazaar [11]. In this work, he takes the development process
of the fetchmail project as an example and proposes the
bazaar process development model.

Ye and Kishida [15], state that, in an open source project,
“Every user is a potential developer,” and propose a role
hierarchy to show that participation in a project is actu-
ally a learning process for both peripheral users and core
developers.

Project Bloof [10] gives a statistical revision log analysis for
the source code evolution of a software project. The aim
of Bloof is to help people comprehend software systems and
the underlying development processes.

Project CVSMonitor [4] provides a more comprehensive pre-
sentation of revision analysis of the CVS repository, a ver-
sion control system that has been widely used in the last ten
years.

Zimmermann et al [16] recently proposed that mining ver-
sion control histories can be helpful during the project de-
velopment process, as they give programmers information
about all the changes of a given revision.

White and Smyth [14] discuss several methods for analyzing
large and complex network structures. In their experiments,
they evaluated the different properties of many algorithms
on toy graphs and demonstrated how their approach can
be used to study the relative importance of nodes in real-
world networks, including a network of interactions among
the September 11th terrorists, a network of collaborative re-
search in biotechnology among companies and universities,
and a network of co-authorship relationships among com-
puter science researchers.

Scacchi and Jensen [2] use techniques that exploit advances
in artificial intelligence to discover the development pro-
cesses of publicly available open source software develop-
ment repositories. Their goal is to facilitate process discov-
ery in ways that use less cumbersome empirical techniques
and offer a more holistic, task-oriented process than current
automated systems provide.

5. CONCLUSION
In this work, we use social network analysis methods to an-
alyze the developer social network of a project created from
the project’s revision history.

We then try to verify the LPP process in Ye and Kishida’s
work [15]. Although this is not very accurate, we can at
least split project developers into two groups: core and pe-
ripheral. This supports our conjecture that even in an open
source project, there is a part of the source code that can be
retained by core members only. With further graph-based
network analysis, we believe that it would be possible to
achieve more accurate results.

Developers involved in the revision process reveal their skill
and familiarity with the source modules by different degrees

of interfacing and interaction with core members. From the
revision histories, we build a link structure between develop-
ers and code modules and analyze the relationships between
these structures to determine their level of involvement with
core teams and kernel modules. The extent of developers’
involvement can be ranked. From the ranking results, we
can verify the LPP learning process and propose a potential
boundary between conceptual kernel and non-kernel mod-
ules. This boundary gives a clear indication of the degree of
source code openness in joint development projects involv-
ing core and none-core teams of developers . The weak links
around the boundary may significantly affect the ability of
external peripherals to maintain the project’s vitality and
popularity. Our preliminary results reveal a few such pro-
cess cases of relative importance on the constructed graphs
that could affect a project’s development.

6. REFERENCES
[1] Chris Smith Bharat Mediratta. Gallery. a slick,

intuitive web based photo gallery with authenticated
users and privileged albums, 2000.
http://sourceforge.net/projects/gallery/.

[2] Walt Scacchi Chris Jensen. Data mining for software
process discovery in open source software development
communities. In Proc. Workshop on Mining Software
Repositories, page 96, 2004.

[3] Laurent Destailleur. Awstats is a free powerful and
featureful server logfile analyzer, 2000.
http://sourceforge.net/projects/awstats/.

[4] Adam Kennedy. Project cvsmonitor. cvsmonitor is a
cgi application for looking at cvs repositories in a
much more useful and productive way, 2002.
http://ali.as/devel/cvsmonitor/.

[5] Tim Kosse. Filezilla is a fast ftp and sftp client for
windows with a lot of features. filezilla server is a
reliable ftp server, 2001.
http://sourceforge.net/projects/filezilla/.

[6] J. Lave and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge university Press,
Cambridge, 1991.

[7] Jesus M. Gonzales-Barahona Luis Lopez-Fernandez,
Gergorio Robles. Applying social network analysis to
the information in cvs repositories. In MSR2004, 2004.

[8] Eloy Lafuente Martin Dougiamas. Moodle is php
courseware aiming to make quality online courses (eg
distance education) easy to develop and conduct.,
2001. http://sourceforge.net/projects/moodle/.

[9] Löıc Chapeux Oliver Müller, Marc Delisle.
phpmyadmin is a tool written in php intended to
handle the administration of mysql over the web.
http://sourceforge.net/projects/phpmyadmin/.

[10] Lukasz Pekacki. Project bloof. bloof is an
infrastructure for analytical processing of version
control data, 2003.
http://sourceforge.net/projects/bloof/.

87

[11] Eric Steven Raymond. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly, 1999.

[12] Gert Sabidussi. The centrality index of a graph,
volume 31, pages 581–603. Psychometrika, 1966.

[13] David Trowbridge Tim Riker. Opensource opengl
multiplayer multiplatform battle zone capture the flag.
3d first person tank simulation, 2000.
http://sourceforge.net/projects/bzflag/.

[14] Scott White and Padhraic Smyth. Algorithms for
estimating relative importance in networks. In KDD
’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 266–275. ACM Press, 2003.

[15] Yunwen Ye and Kouichi Kishida. Toward an
understanding of the motivation open source software
developers. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 419–429. IEEE Computer Society, 2003.

[16] T. Zimmermann, P. Weigerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In 26th International Conference on Software
Engineering (ICSE 2004.), 2004.

88

 Taxonomies & Formal Representations

89

Towards a Taxonomy of Approaches for Mining of
Source Code Repositories

Huzefa Kagdi, Michael L. Collard, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{hkagdi, collard, jmaletic}@cs.kent.edu

ABSTRACT
Source code version repositories provide a treasure of information
encompassing the changes introduced in the system throughout its
evolution. These repositories are typically managed by tools such
as CVS. However, these tools identify and express changes in
terms of physical attributes i.e., file and line numbers. Recently,
to help support the mining of software repositories (MSR),
researchers have proposed methods to derive and express changes
from source code repositories in a more source-code “aware”
manner (i.e., syntax and semantic). Here, we discuss these MSR
techniques in light of what changes are identified, how they are
expressed, the adopted methodology, evaluation, and results. This
work forms the basis for a taxonomic description of MSR
approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR'05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance,
and Enhancement – documentation, enhancement,
extensibility, version control

General Terms
Management, Experimentation

Keywords
Mining Software Repositories, Taxonomy, Survey

1. INTRODUCTION
Software version history repositories are currently being
extensively investigated under the umbrella term Mining of

Software Repositories (MSR). Many of the repositories being
examined are managed by CVS (Concurrent Versions System). In
addition to storing difference information across document(s)
versions, CVS annotates code commits, saves user-ids,
timestamps, and other similar information. However, the

differences between documents are expressed in terms of physical
entities (file and line numbers). Moreover, CVS does not
identify/maintain/provide any change-control information such as
grouping several changes in multiple files as a single logical
change. Neither does it provide high-level semantics of the nature
of corrective maintenance (e.g., bug-fixes).

Researchers have identified the need to discover and/or uncover
relationships and trends at a syntactic-entity level of granularity
and further associate high-level semantics from the information
available in the repositories. Recently, a wide array of approaches
emerged to extract pertinent information from the repositories,
analyze this information, and derive conclusions within the
context of a particular interest.

Here, we present our analyses showing the similarities and
variations among six recently published works on MSR
techniques. These examples represent a wide spectrum of current
MSR approaches. Our focus in on comparing these works with
regards to the following three dimensions:

Entity type and granularity

How changes are expressed and defined

Type of MSR question.

Further, we define notation to describe MSR in an attempt to
facilitate a taxonomic description of MSR approaches. Finally,
we outline the MSR process in terms of the underlying entities,
changes, and information required to answer a high-level MSR
question. We believe this work provides a better insight of the
current research in the MSR community and provides groundwork
for future direction in building efficient and effective MSR tools.

The remainder of the paper is organized as follows: section 2
discusses the various MSR approaches, section 3 gives a formal
definition of MSR, section 4 outlines the MSR process and
requirements, and finally we draw our conclusions.

2. APPROACHES TO MSR
A number of approaches for performing MSR are proposed in the
literature. Here, we discuss these techniques with regards to the
identified entities, questions addressed, evaluation, and results.

2.1. MSR via CVS Annotations
One approach is to utilize CVS annotation information. In the
work presented by Gall et al [2, 3], common semantic (logical and
hidden) dependencies between classes on account of addition or
modification of a particular class are detected, based on the

90

In summary, their technique brings forward various capabilities:version history of the source code. A sequence of release numbers
for each class in which it changed are recorded (e.g., class A =<1,
3, 7, 9>). The classes that changed in the same release are
compared in order to identify common change patterns based on
the author name and time stamp from CVS annotations. Classes
that changed with the same time stamp (in a 4 minute window)
and author name are inferred to have dependencies. In summary,
this work seeks answers to the following representative questions:

Ability to identify addition, modification, and deletion of
syntactic entities without utilizing any other external
information (e.g., AST).

Handles various programming languages and HTML
documents.

Detection of hidden dependencies that cannot be
identified by source-code analysis.

Which classes change together?

How many times was a particular class changed? 2.3. MSR via Heuristics
How many class changes occurred in a subsystem (files in
a particular directory)?

CVS annotation analysis can be extended by applying heuristics
that include information from source code or source-code models.
A variety of heuristics, such as developer-based, history-based,
call/use/define relation, and code-layout-based (file-based), are
proposed and used by Hassan et al [5] to predict the entities that
are candidates for a change on account of a given entity being
changed. CVS annotations are lexically analyzed to derive the set
of changed entities from the source-code repositories. The
following assumptions were used: changes in one record are
considered related; changes are symmetric; and the order of
modification of entities in a change set is unimportant. The
authors briefly state that they have developed techniques to map
line-based changes to syntactic entities such as functions and
variables, but it was not completely clear the extent to which this
is automated.

How many class changes occurred across subsystems?

This technique is applied on 28 releases of an industrial system
written in Java with half a million LOCS. The authors reported
that the logical couplings were revealed with a reasonable recall
when verified manually with the subsequent release. The authors
suggest that logical coupling can be strengthened by additional
information such as the number of lines changed and the CVS
comments.

In another study, the file-level changes in mature software (the
email client Evolution) are studied by German [4]. The CVS
annotations are utilized to group subsequent changes into what is
termed a modification request (MR). Here, the focus is on
studying bug-MRs and comment-MRs to address the following
questions:

These heuristics are applied to five open-source projects written in
C. General maintenance records (e.g., copyright changes, pretty
printing, etc) and records that add new entities are discarded. The
best average precision and recall reported in table 3 of [5] was
12% (file-based) and 87% (history) respectively. The
call/use/define heuristics gave a 2% and 42% value for precision
and recall respectively while the hybrid heuristics did better.

Do MRs add new functionality or fix different bugs?

Are MRs different in different stages of evolution?

Do files tend to be modified by the same developer?

Further effort was on investigating the hypotheses that bug-MRs
involve few files whereas comment-MRs involve large number of
files.

The research in both [8] and [5] use source-code version history to
identify and predict software changes. The questions that they
answered are quite interesting with respect to testing and impact
analysis.2.2. MSR via Data Mining

Data mining provides a variety of techniques with potential
application to MSR. Association rule mining is one such
technique. As an example, the recent work by Zimmerman et al
[8] aims to identify co-occurring changes in a software system,
For example, when a particular source-code entity (e.g., function
with name A) is modified what other entities are also modified
(e.g., functions with names B and C). This is akin to market-
basket analysis in Data Mining. The presented tool, ROSE, parses
the (C++, Java, Python) source code to map the line numbers to
the syntactic or physical-level entities. These derived entities are
represented as a triple (filename, type, identifier). The subsequent
entity changes in the repository are grouped as a transaction. An
association rule mining technique is employed to determine rules

of the form B, C A. Examples of deriving association rules such
as a particular “type” definition change leads to changes in
instances of variables of that “type” and coupling between
interface and implementation is demonstrated. This technique is
applied on eight open-source projects with a goal of utilizing
earlier versions to predict the changes in the later versions.
Although performed at a function and variable granularity, the
best precision reported was 26% at the file-level granularity.

2.4. MSR via Differencing
Source-code repositories contain differences between versions of
source code. Therefore, MSR can be performed by analyzing the
actual source-code differences. Such an approach is taken by the
tool Dex, presented by Raghavan et al [7], for detecting syntactic
and semantic changes from a version history of C code. All the
changes in a patch are considered to be part of a single higher
level change, e.g., bug-fix. Each version is converted to an
abstract semantic graph (ASG) representation. A top-down or
bottom-up heuristics-based differencing algorithm is applied to
each pair of in-memory ASGs specialized with Datrix semantics.
The differencing algorithm produces an edit script describing the
nodes that are added, deleted, modified, or moved in order to
achieve one ASG from another. The edit scripts produced for
each pair of ASGs are analyzed to answer questions from entity-
level changes such as how many functions and function calls are
inserted, added or modified to specific changes such as how many
if statement conditions are changed. Dex supports 398 such
statistics.

This technique was applied to version histories of GCC and
Apache. Only bug-fix patches were considered (deduced from the
CVS annotations), 71 for GCC and 39 for Apache respectively.

91

The differencing algorithm takes polynomial time to the number
of nodes. Average time of 60 seconds and 5 minutes per file were
reported for Apache and GCC respectively on a 1.8 Ghz Pentium
IV Xeon 1GB RAM machine. The six frequently occurring bug-
fix changes as a percentage of patches in which they appear are
reported. Dex reported 378 out of 398 statistics always correct
with an average rate of 1.1 incorrect results per patch.

In an approach by Collard et al [1, 6] a syntactic-differencing
approach called meta-differencing is introduced. The approach
allows you to ask syntax-specific questions about differences.
This is supported by encoding AST information directly into the
source code via an XML format, namely srcML, and then using
diff to compute the added, deleted, or modified syntactic elements.
The types and prevalence of syntactic changes are then easily
computed. The approach supports queries such as:

Are new methods added to an existing class?

Are there changes to pre-processor directives?

Was the condition in an if-statement modified?

While no extensive MSR case study has been carried out using
meta-differencing, it does support the functionality necessary to
address a range of these problems. Additionally, the method is
fairly efficient and usable with run times for translation similar to
that of compiling and computation of the meta-difference is
around five times that of diff.

3. A DEFINITION OF MSR
The investigations described in the previous section have a
number of common characteristics. They all are working on
version release histories (changes), all work at some level of
change granularity (software entity), and most of them ask a very
similar (MSR) question. We also see that the MSR process is to
extract pertinent information from repositories, analyze this
information, and derive conclusions within the context of software
evolution. From these examples we further define MSR by
identifying some fundamental representational issues and defining
the terminology so we can contrast the different approaches.
However, first we discuss the types of questions asked.

3.1. MSR Questions & Results
What types of questions can be answered by MSR? In the
examples described in section 2 we see two basic classes of
questions. The first is a type of market-basket question and the
other deals with the prevalence, or lack of, a particular type of
change. The market-basket1 type question is formulated as: If A
happens then what else happens on a regular basis? The answer to
such a question is a set of rules or guidelines describing situations
of trends or relationships. That is, if A happens then B and C

happen X amount of the time.

This type of question often addresses finding hidden dependencies
or relationships and could be very important for impact analysis.
MSR identifies (or attempts to identify) the actual impact set after
the fact (i.e., after an actual change). However, MSR oftentimes
gives a “best-guess” for the change. The change may not be
explicitly documented and as such must sometimes be inferred.

This is an interesting trade-off and is reflected in the results
described in Hassan et al [5] and Zimmerman et al [8].

The other type of question addressed in the examples discussed
concerns the characteristics of common changes. The work by
Raghavan et al [7] asks the question: What is the most common
type of change in a bug-fix? This also has implications to impact
analysis but not directly.

To even begin to answer these types of high-level questions we
need to address the practical aspects of extracting facts and
information from source-code repositories.

3.2. Underlying Representation
Repositories consist of text documents containing source code
(e.g., routine.h, routine.cpp). The representation of differences
between versions may also contain source code (e.g., output of
diff). If the mining process uses the source code in its original
document form than fact extractors are limited to using a light-
weight approach, such as regular expressions as an API to the
source code. The source code can also be represented in a data
view, such as an AST (Abstract Syntax Tree). The AST view
allows an API that is based on the abstract syntax of the source
code.

The choice of representation is very important. Using a textual
document view allows access to all parts of the document
including comments, white space, and particular ordering
information. Tools such as diff also work on text files. However,
this textual view creates difficulty in determining the contents of a
particular version. On the other hand, using an AST view of the
source code does not easily allow access to white space,
comments, etc.

The representation of the differences between source-code
documents is an extension of the source-code representation.
Textual representations can use tools such as diff. Regions of
lines that are deleted or added are recorded, along with additional
lines of text of the added lines. The ASG tree/graph-based
representations of a program allow for changes to be represented
as tree/graph changes and can include syntactic information easily.

As information is extracted for the purpose of mining it must be
stored. Because of the large amounts of source code involved the
extraction result is often chosen to produce as compact a result as
possible. For example, if the purpose is to take a single
measurement of each source-code document then only this single
result is required.

The higher the abstraction of the extraction result the more
specific the purpose of the extraction. This makes methods and
tools for extracting results unusable for other, even closely related,
applications.

Note that the desire to not store all of the original documents is
partially based on the source-code representation chosen. An AST
representation can be hundreds of times larger than the original
document. There is too much to store in memory simultaneously,
so an external representation format must be used.

These differences in representation and the level of syntactic
information extracted often makes methods and tools for
extracting results unusable for other, even closely related, MSR
applications.

1 The term market-basket analysis is widely used in describing data mining
problems. The famous example about the analysis of grocery store data is
that “people who bought diapers often times bought beer”.

92

3.3. Definitions of Terms 4.1. Entity-Level Information
With respect to MSR the basic concepts involve the level of
granularity of what type of software entity is being investigated,
the changes, and the underlying nature of a change. We present
the definitions of these concepts in an attempt to form a
terminology for what a change is and how it can be expressed
within the context of MSR. If a need arises, these definitions will
be refined to accommodate the future MSR approaches as they
emerge.

The entity-level category addresses which entities changed, the
location of the changed entities, and how many were changed.
For example if functions represent our entities then we want to be
able to answer queries such as:

Which functions were added?

Was the function A modified?

How many functions were deleted?

Definition: An entity, e, is a physical, textual, or syntactic element
in software. Example: file, line, function, class, comment, if-
statement, white-space, etc.

The first query is a discovery or fact extraction activity regarding
functions that were added between given source-code versions
(e.g., a list of functions [f1,f2, .. fn]). Similar questions can be
defined for the deletion, modification, or movement of an entity.
MSR approaches need this information for addressing questions
such as identifying relations between functions that were added
i.e., did a addition/deletion of a particular function lead to the
addition/deletion of other functions?

Definition: A change, , is a modification, addition, or deletion to,
or of, an entity. Additionally, this change defines a mapping from

the original entity to the new entity as in (e) e’, () e’ is

addition, and (e) is deletion. A change describes which
entities are changed and where the change occurs.

The second query regards a particular function of interest. The
research discussed in section 2.1 (CVS Annotations) needs this
type of support to determine whether a particular class was
modified in a given version.

Definition: The syntax of a change is a concise and specific
description of the syntactic changes to the entity. This description
is based on the grammar of the language(s) of entities. We

classify in the context of e as having some specific syntactic
type (if-statement), change type (add, remove), location, etc. For
example: a condition was added to an if-statement; a parameter
was renamed; an assignment statement was added inside a loop;
etc. The notation for deriving the syntax of a change is as follows:

syntax(e,) = (d1, d2, …, dn) where each di is some descriptor of
the syntax.

The last query is an aggregate count that is useful for
identification of higher level semantic changes such as those in the
techniques discussed in section 2.4 (Differencing).

4.2. Change Information
Determining the nature of a change in an entity is the next step in
the process. This kind of change can be syntactic or semantic.
This specific change information can enhance the research
presented in section 2.2 (Data Mining) by enabling the restricted
application of the association rules and thus cutting down the list
of affected entities that are reported. For example, consider a case
where the change to an existing if-statement is only in the

condition. The rule {if-condition change} A B, C would report
B and C as affected entities only when the precondition {if-

condition change} in entity A is satisfied. Augmenting these rules
with the exact nature of change further reduces the number of
affected components and applicable association rules; thus
avoiding false positives. Also, to determine a semantic change,
such as identifying interface changes, this type of knowledge is
needed:

Definition: The semantics of a change – is a high-level, yet
concise, description of the change in the entity’s semantics or
feature set. This may be the result of multiple syntactic changes

that is, = 1 2 … n. For example: a class interface change;
a bug fix; a new feature was added to a GUI; etc. So we can now

define notation for the semantics of a change as: semantics (e,)
= (d1, d2, …, dn) where each di is some descriptor of the semantics.

4. INFORMATIONAL REQUIREMENTS
Mining of Software Repositories (MSR) is operationalized by the
dimensions of the problem and types of information that must be
extracted to support the high-level question. We feel the
following are key dimensions to categorize MSR approaches:

Entity type and granularity used (e.g., file, function,
statement, etc.);

Are the modifications in function A only in if-statements?

Was the conditional in the 2nd if-statement deleted in
function A?How changes are expressed and defined (e.g.,

modification, Addition, Deletion, location, etc.);

Type of question (e.g., market-basket, frequency of a type
of change, etc.).

The higher-level semantic information such as identification of
conditional bugs addressed by research discussed in section 2.4
(Differencing) needs lower-level facts as reported by the above
questions:We have already addressed the type of questions in section 3.1.

We now need to focus on the information necessary to answer
these questions. From the discussion in section 3, we see that two
types of pertinent information need to be extracted to answer MSR
questions, namely entity-level information and information about
the nature of change of an entity. We now describe each category
and the specific types of fact extraction associated with each.

Were only comments changed in function A?

Was the header comment of function A modified?

Is there a change in the code layout in an entity A?

These questions enable analysis to utilize or discard such textual
changes. The research discussed in section 2.3 (Heuristics)
analyzed CVS message annotations to discard header comment
changes and proposed heuristics on predicating change
propagation based on developer name and code layout. This

93

approach can be augmented with the facts gathered by the above
questions.

Table 1. A taxonomy of MSR approaches.

Entity Change Question

Annotation
Analysis

Gall et al class

syntax and
semantic -

hidden
dependencies

market
basket and
prevalence

German
file &

comment

syntax and
semantic –
file coupling

market
basket and
prevalence

Heuristic

Hassan et al
function &
variable

syntax and
semantic -

dependencies

market
basket

Data Mining

Zimmerman
et al

class &
method

syntax and
semantic -
association

rules

market
basket

Differencing

Raghavan
et al

logical
statement

syntax and
semantic –

move
prevalence

Collard
et al

Logical
statement

syntax – add,
delete, modify

prevalence

5. CONCLUSIONS
In Table 1 we present an overview of the discussed approaches
along with their MSR characteristics. We’ve categorized them
generally into four groups (along the left). Then for each, we
identify what granularity of entities they deal with, what types of
changes they express (as defined in section 3.3), and what general
class of question they are trying to address.

There is a large difference in the level to which these approaches
understand the programming language syntax. Most of the
approaches work with a fairly high-level entity. The two
differencing approaches however can work as low as primitive
logical programming language statements (if, while, class, or
function).

Further investigation is necessary to discern between how changes
are expressed. Also, there is very different semantic information

being used in the approaches. The notation we defined fits in well
here but the domains must be further studied to support a more
descriptive taxonomy. It is interesting to notice that both classes
of questions are represented in this survey.

6. ACKNOWLEDGEMENTS
This work was supported in part by a grant from the National
Science Foundation C-CR 02-04175.

7. REFERENCES
[1] Collard, M. L. Meta-Differencing: An Infrastructure for

Source Code Difference Analysis. Kent State University,
Kent, Ohio USA, Ph.D. Dissertation Thesis, 2004.

[2] Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical
Coupling Based on Product Release History in Proceedings
of 14th IEEE International Conference on Software
Maintenance (ICSM'98) (Bethesda, Maryland, March 16 -
19, 1998), 190-198.

[3] Gall, H., Jazayeri, M., and Krajewski, J. CVS Release
History Data for Detecting Logical Couplings in
Proceedings of Sixth International Workshop on Principles
of Software Evolution (IWPSE'03) (Helsinki, Finland,
September 01 - 02, 2003), 13-23.

[4] German, D. M. An Empirical Study of Fine-Grained
Software Modifications in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
316-325.

[5] Hassan, A. E. and Holt, R. C. Predicting Change
Propagation in Software Systems in Proceedings of 20th
IEEE International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
284-293.

[6] Maletic, J. I. and Collard, M. L. Supporting Source Code
Difference Analysis in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'04) (Chicago,
Illinois, September 11-17, 2004), 210-219.

[7] Raghavan, S., Rohana, R., Podgurski, A., and Augustine, V.
Dex: A Semantic-Graph Differencing Tool for Studying
Changes in Large Code Bases in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September 11 - 14, 2004),
188-197.

[8] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
Mining Version Histories to Guide Software Changes in
Proceedings of 26th International Conference on Software
Engineering (ICSE'04) (Edinburgh, Scotland, United
Kingdom, May 23 - 28, 2004), 563-572.

94

A Framework for Describing and Understanding Mining
Tools in Software Development

Daniel M. German Davor Čubranić Margaret-Anne D. Storey
Software Engineering Group, Dept. of Computer Science

University of Victoria, Box 3055 STN CSC, Victoria BC
Canada V8W 3P6

{dmg, mstorey, cubranic}@uvic.ca

ABSTRACT
We propose a framework for describing, comparing and under-
standing tools for the mining of software repositories. Thefun-
damental premise of this framework is that mining should be done
by considering the specific needs of the users and the tasks tobe
supported by the mined information. First, different typesof users
have distinct needs, and these needs should be taken into account
by tool designers. Second, the data sources available, and mined,
will determine if those needs can be satisfied. Our frameworkis
based upon three main principles: the type of user, the objective of
the user, and the mined information. This framework has the fol-
lowing purposes: to help tool designers in the understanding and
comparison of different tools, to assist users in the assessment of
a potential tool; and to identify new research areas. We use this
framework to describe several mining tools and to suggest future
research directions.

1. INTRODUCTION
Understanding how programs evolve or how they continue to change
is a key requirement before undertaking any task in softwareengi-
neering or software maintenance. Software engineering is ahighly
collaborative activity and henceawarenessis an important factor
in being informed of what has changed and what is currently being
changed.

Software teams consist of many different stakeholders withdistinct
roles in their projects. A developer is interested in knowing how
related artifacts changed in the past and why these changes oc-
curred. A reengineer wants to consider how a system has evolved
so that they can learn from prior experiences before redesigning the
system. A manager is interested in understanding ongoing devel-
opment and a programmer’s previous work before assigning new
work. A researcher wants to study how large projects have evolved
so that the lessons learned can be applied to new projects. And a
tester wishes to know which parts of the program to test, and who
to talk to if they have questions or problems to report. Some of
the many questions these various stakeholders ask of a software
project can often be answered by other team members. In some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA Copyright 2005 ACM
1-59593-123-6/05/0005...$5.00

cases the relevant team members may no longer be available or
they may not remember important details adequately. Therefore,
answering these questions requires the extraction of information
from a project’s history to answer a particular stakeholder’s ques-
tions. Unfortunately, these questions often do not have a simple
answer. Details concerning concrete changes can be extracted from
a source code repository, but the intent behind these changes is not
easy to infer without considering other information sources and do-
ing some sort of deeper analysis.

During the past few years, many researchers have started to inves-
tigate how software repositories and other information sources can
be mined to help answer interesting questions which will inform
software engineering projects and processes. Most of thesere-
search projects originate from trying to solve particular problems
that satisfy different user needs.

In a recent paper [15], we presented a framework to describe how
awareness tools in software development use visual techniques to
present relevant information to different stakeholders. We used this
framework to provide a survey of visualization tools that provide
awareness of human activities in software engineering. Theframe-
work considered the intent behind these tools, their presentation
and interaction style, the information they presented, as well as pre-
liminary information on their effectiveness.

We noted in this earlier survey that the visualization toolsare lim-
ited in their effectiveness by the information available todisplay.
For example, if a tool only extracts information about software re-
leases, the tool will not be able to reveal who made the changes,
no matter how sophisticated the visualization technique may be.
Extracting information from most information sources is relatively
straightforward. But many questions can only be answered bycor-
relating information from multiple sources. The difficultyof suc-
cessfully mining pertinent information arises during thisanalysis.
It is challenging to know which questions to ask and how best to
answer the questions given that some of the information may be
incomplete or vague. An example is relating an email message
to a particular change in the source code when trying to discover
intent. Another problem is that such information repositories al-
though rich, are often very large and contain many details that are
not relevant to the problem at hand. It is also important to know
how to filter the information so that the user is not overwhelmed by
a deluge of data.

The goal of this paper, therefore, is to complement our visualiza-
tion framework by exploring and analyzing the issues related to the
mining aspects of software tools. In our previous work we stud-

95

ied the issues related to the presentation of information tothe user,
while in this paper we focus on the data available and its extrac-
tion. A framework for mining software repositories should enable
us and other researchers to understand how these diverse mining
tools are positioned within a broader research context. It should
provide a mechanism for tool researchers and designers to evalu-
ate and compare their work with other efforts, as well as illuminate
new research areas which could benefit software engineering.

In the first part of this paper, we summarize the different user roles
and the specific tasks that can be supported by mining software
repositories. We then explore, in depth, the different types of infor-
mation that can be beneficial to these user roles while considering
what kinds of analyses are needed to discover pertinent informa-
tion. Finally, we demonstrate the benefits of this frameworkby
comparing three diverse research tools that were independently de-
veloped by the three authors. Each of these three tools minesor
extracts information from software repositories to support software
engineering tasks. The framework helps us understand how these
tools may be improved and highlights the need for more analysis of
combined information sources.

2. A FRAMEWORK FOR COMPARISON
The framework for comparing software visualization tools of hu-
man activities is described in detail in [15]. Here we focus on just
three of its dimensions, where each attempts to describe a different
aspect of a repository mining tool. “Intent” explains who are the
expected users of the tool, and its main objective. “Information”
describes the specific sources that the tool mines and the type of
analysis made by the tool. This dimension is elaborated in more
detail as it is most relevant to mining software repositories. We
provide some examples of tools to strengthen the descriptions of
information extraction where necessary. Finally, the “infrastruc-
ture” addresses any special needs that the tool has.

2.1 Intent
We describe this dimension in detail in our other paper [15],but
summarize it here.

Role. This dimesion identifies who will use the tool. Roles include
developers, and whether they are a part of ateam that is co-located
or distributed. Other development roles includemaintainers, re-
verse engineers and reengineers. Managers, testers and docu-
menters can also improve their effectiveness by knowing about hu-
man activities in the project. And finallyresearchers may wish to
explore human activities to make recommendations for improved
tools and processes on future projects.

Time. Some tools provide information about activities occuring in
the distant or nearpast, while other other tools focus on presenting
information about thepresent. Other tools try to forecast thefuture
and predict which parts of the system are more prone to be modified
in the future.

Cognitive support. Cognitive support describes how a tool can
help improve human cognition [16]. In order to provide cognitive
support, it is essential to know which tasks require extra tool sup-
port. Specifically we need to know which questions are likelyto be
asked during these tasks and how the questions can be answered.
The questions that the various roles can ask about developerac-
tivities can be roughly classified into four categories:authorship,
rationale, chronology, andartifacts. Consequently, we consider

how mining tools can provide information according to thesefour
categories.

2.2 Information
As we mentioned previously, this dimension is thoroughly explored
as it is the most relevant to mining software repositories. To help
clarify the discussion when necessary, we give specific examples of
tools.

Change management.Configuration managementtools provide
support for building systems by selecting specific versionsof soft-
ware artifacts [7].Version controltools contribute to software proj-
ects in the following ways: software artifact management, change
management and team work support [18]. Change management is
an important data source because it providestraceability: it records
who performed a given change, and when it was performed. The
capabilities of the change management system will determine the
type of information that can be extracted. For instance, CVSdoes
not record when a given commit is a branch-merge and it does not
support transactional commits. Several heuristics have been cre-
ated to overcome these problems [4, 5].

Program code. We classify these tools into two categories. In
the first category we place those tools that treat the file as a unit,
and make no effort to understand its contents; we call these tools
programming-language-agnostic. On the other hand, tools are
programming-language-awareif they attempt to do some fact ex-
traction from the source code. We can further classify programming-
language-aware tools based upon:

• The language supported. Given the differences in syntax
and grammar, tools that are language-specific can only un-
derstand a fixed set of programming languages.

• Syntactic analysis. In this type of analysis the extractor does
not need to understand what the code does, only its syntax.
Examples of this analysis are the removal of comments from
the source code (to be able to distinguish if the changes af-
fected actual source code or only its documentation), and ex-
traction of the main entities of the code (such as packages,
classes, methods, functions, etc.).

• Semantic analysis. This analysis requires an understanding
of the intent of the source code and can be donedynamically
(by running the software under well defined test-cases) or
statically (by processing the source code). The generation of
a call graph, or the tracing of the execution of a program are
examples of this type of analysis.

Defect tracking. Many larger software projects rely on tracking
tools to help with the management ofdefects andchange requests.
Such systems often store metadata about who is assigned a task
and track the task’s completion. In some cases a defect manage-
ment tool is also used as a way to track activities and changesin re-
quirements. For example, Bugzilla includes a category for adefect
report called “improvement”, which is used by its users to submit a
change in requirements.

Correlated information. We have observed that the type of anal-
ysis and correlation can be classified into two broad categories:

• Within the data source. This type of analysis uses data from
one data source only and attempts to correlate different data

96

entities within it. In some cases this analysis strives to re-
construct relationships that were lost because they were not
explicitly recorded (such as grouping file revisions into com-
mits in CVS). In other cases, the new information is com-
puted from the data available in the source (for example, ex-
tracting the functions that were modified in a given change).
Some sources are very rich in the amount of information that
can be extracted and correlated from them (version control
systems are one example).

• Between the data sources. In some cases, there is explicit
information that allows a tool to correlate entities from two
different data sources. For example, it is not uncommon for
open source developers to record the corresponding Bugzilla
defect number in the log of the CVS commit that resolves
such defect, allowing a tool to correlate file revisions witha
defect. Frequently, there is no explicit information that cor-
relates information from different sources, and heuristics are
required to build these relationships. For example, which
email messages are relevant to a particular bug fix?.

Informal communication. Email is undoubtedly the most widely
used form of computer-mediated communication, and it is notsur-
prising that distributed software development projects rely on it ex-
tensively. In the early days of open-source software, a project mail-
ing list used to be one of the first, and often the only, communica-
tion and coordination mechanism used by development teams [2].
Today, specialized tools like Bugzilla have taken over someof its
functionality, but email remains an essential component ofdis-
tributed development process. For example, open-source projects
typically document all decisions on the project mailing list, even
when the original decision was reached in a different medium, or
such as face-to-face [8].

In recognition of the mailing list’s importance to a project, it is
usually archived and available on the web. However, messages in
the archive are typically organized chronologically or at best by
conversation thread. Even when text search of an archive is avail-
able, finding specific information can be difficult. For example, if
a developer wants to know why certain a function was added to
the project, then the challenge is to find all the messages that re-
late to the decision to add that function. The limited structure and
metadata of archived email mean that this source of information is
rarely mined. However, in their study of developer communication
in open-source projects, Gutwin et al. found that developers would
like to see improved access to email archives [8].

Various forms of text chat, such as IRC and IM, have become in-
creasingly important channels of communication in open-source
projects. For example, in 2000, neither Apache nor Mozilla projects
had official IRC channels used by the development team, and today
both do. Text chat is rarely archived (and when it is, it is usually in
another form, such as email messages, or as part of a Web page), but
this is likely to change as its importance is recognized. However,
chat has even less structure than email, so it may be considerably
more difficult to mine effectively.

Advances in computing technology are making it possible to archive
communication that used to be unarchivable. For example, Richter
et al. have demonstrated a system for automated capture of team
meetings [11]. Their system provides automated transcriptof the
spoken content, which the attendees can annotate on-the-flywith a
set of keywords from a predefined list.

Local history. Many local interactions are not captured by a project’s
repositories. However, a developer’s local history is a rich resource
for understanding human activities and how they relate to the soft-
ware under development. Recently, several researchers have been
investigating how mining this information source can assist in nav-
igation and program comprehension.

Two tools that address navigation support are Mylar and NavTracks.
Mylar [9] provides a degree-of-interest model for the Eclipse soft-
ware development environment. As a program artifact is selected,
its value increases while the value of other artifacts decrease. There-
fore, elements of more recent interest have a higher degree of in-
terest value. Mylar filters artifacts from the Package Explorer in
Eclipse that are below a certain threshold and thus helps a developer
focus on the artifacts in the workspace that are relevant to the cur-
rent activity. Navtracks [14] is a tool to support browsing through
software spaces. It provides recommendations of files that should
be of higher relevance to the user given the currently selected file.
It keeps track of the navigation history of a software developer,
forming associations between related files. Associations are cre-
ated when short cycles are detected between file navigation steps.
There are also several projects in the human interaction research
community that investigate how tracking interaction histories can
support future interactions [17, 1].

Schneider et al. describe how local interaction histories can be mined
to support team awareness [13]. They propose that sharing local
interactions among team members can benefit the following activ-
ities: coordinating team member activities such as undo, identi-
fying refactoring patterns and coordinating refactoring operations,
mining browsing patterns to identify expertise, and project manage-
ment. They describe a tool called Project Watcher and are currently
evaluating the benefits it brings to developers.

2.3 Infrastructure
This category addresses the environment needed to support the tool.

Required infrastructure. This category lists any requirement the
tools have, such as a given operating system, an IDE such as Eclipse,
a Web server and client, a database management system, etc.

Offline/Online. Tools can be classified depending upon whether
the software repository is required during its operation. For in-
stance, some tools mine the software repository ahead of time,
while others query the repository as a result of a user request.

Storage backend.If the tool operates offline, this category is used
to describe how it stores its required data. For example, some tools
use a SQL backend, other use XML or a proprietary format.

3. A COMPARISON OF MINING
We now use this framework to help us understand the intent and
mining capabilities of three tools designed by the authors.

3.1 softChange
Intent: The main goal of softChange is to help programmers, their
managers and software evolution researchers in understanding how
a software product has evolved since its conception [6]. With re-
spect totime, softChange concentrates only on the past. In terms of
cognitive support, it allows one to query who made a given change
to a software project (authorship), when (chronology) and, when-
ever available, the reason for the change (rationale). Theartifacts

97

that softChange tracks are files, and some types of entities in the
source code (such as functions, classes, and methods).

Information: softChange extracts and correlates three main sources
of information: the version control system (CVS), the defect track-
ing system (Bugzilla), and the software releases. softChange re-
constructs some of the information that is never recorded byCVS
(such as recreating commits), and it does syntactic analysis of the
source code. The analysis is static and it supports C/C++ andJava.
softChange also attempts to correlate information betweenCVS
and Bugzilla using defect numbers.

Infrastructure: softChange is an offline tool that uses an SQL
database for its storage needs. Its mining is done without any spe-
cial requirements beyond access to the software repository. One
particular problem with the type of mining that softChange does is
that it can retrieve a very large amount of data, and for that reason,
it is recommended that it operate on a local copy of the reposito-
ries (rather than query the repositories using the Internet, consum-
ing their bandwidth and computer resources). softChange has two
different front ends: one is Web based, and the other a Java appli-
cation.

3.2 Hipikat
Intent: Hipikat can be viewed as a recommender system for soft-
ware developers that draws its recommendations from a project’s
development history [3]. The tool is in particular intendedto help
newcomers to a software project. Therefore, in terms of thetimedi-
mension, it is concentrated on the past.Cognitive supportis largely
limited to answering questions aboutrationale and artifacts. In
terms of userroles, Hipikat is targeted almost exclusively at devel-
opers and maintainers.

Information: Hipikat is designed to draw on as many information
sources as possible and identify relationships between documents
both of same and different types. The information sources that are
currently supported in Hipikat are: version control system(CVS),
issue tracking system (Bugzilla), newsgroups and archivesof mail-
ing lists, and the project Web site. All four of these sourcesare
typically present in large open-source software projects.

Hipikat is programming language-agnostic. The only information
that it collects from files in the version control system is versioning
data, such as author, time of creation, and check-in comment.

Hipikat correlates information across sources using a set of heuris-
tics, such as matching for bug id in version check-in commentto
link file revisions in CVS and bug reports in Bugzilla. These heuris-
tics are based on observations of development practices in open-
source projects like Mozilla. Another method that Hipikat uses to
find documents that are related is by textual similarity.

Infrastructure: Repository mining in Hipikat works in offline mode:
Hipikat periodically checks project repositories for recent changes
and updates its model. The model is stored in an SQL database.
The front end is an Eclipse plug-in, although in principle itcould
be implemented for other environments, as long as it followsthe
communication protocol with the Hipikat server.

3.3 Xia/Creole
Intent: The main goal of the Xia [18] tool is to helpdevelopersun-
derstand version control activities by visualizing architectural dif-

ferences between two versions. Therefore, within thetime dimen-
sion, it focuses on the past, both near and distant. Xia provides
cognitive supportfor developers when they need answers to ques-
tions concerningauthorship, chronology, andartifacts. Several of
the visual techniques from Xia have been subsequently integrated
into the Creole visualization plug-in for Eclipse [10]. Thepurpose
of the Creole tool is to provide both high-level visualizations of the
architecture of a program as well as detailed views of dependencies
between software artifacts. Combining views from Xia with Creole
means that information concerning version control activities can be
viewed in concert with the dependency views in Creole.

Information: Creole represents software using a graph where nodes
in the graph correspond to software artifacts such as packages,
classes, methods, fields, etc., and edges correspond to relationships
such as “created by,” “calls,” and “accesses data”. Creole extracts
information from the CVS version control system and tags nodes
in the graph with the following information: authorship (author of
first commit, last commit, and the author with the most numberof
commits); time (time of first commit and most recent commit) and
the total number of commits. This information can then be used in
tooltips for the artifacts in the repository, or to filter nodes from the
view or to highlight them using a colour scale.

Infrastructure: Creole and Xia both work inonlinemode and di-
rectly access the CVS repositories. Creole extracts depedencies
from the source code using the Feat data extractor [12]. For large
projects, CVS queries can be very slow. Creole and Xia have both
been integrated with Eclipse as plugins. Creole is available for
download fromwww.thechiselgroup.org/creole.

4. DISCUSSION AND CONCLUSIONS
Tools need to be created around the needs of the developer. To
our knowledge, very little has been done in terms of asking de-
velopers what types of requirements they have, and few toolshave
been formally evaluated to determine if they are useful to their ex-
pected users. Many of the tools are created around the needs of
the researcher (somebody who is interested in understanding how
a software system has evolved). This is a natural phenomenonbe-
cause many of these tools are built by researchers to satisfytheir
own requirements. We could argue that by coincidence some of
the requirements of the managers are the same as those of the re-
searcher. Developers, however, have a different type of questions
that need answers. Researchers and managers are frequentlysat-
isfied with trends and aggregated data; the developer, on theother
hand, requires precise answers most of the time. Once the needs
of the potential users are better understood (theintent), then one
can determine what information should be mined and how it canbe
analyzed (theinformation).

Some data sources are very rich, and others have been barely ex-
ploited. The more data retrieved, the more difficult it will be to
find relevant information for a given query (high recall) with little
noise (high precision). One can argue that the act of “mining” is
not the important problem that tools are trying to solve. Instead,
these tools are attempting to answer valid questions that their users
have by taking advantage of the historical information available.
Tapping into new sources of data should be done with relevance in
mind. How can this data be used to help answer a question? Who
is the potential user? What questions can it help answer?

The less structured or organized the historical information is, the

98

more difficult it is to use it effectively. We conjecture thatthe rea-
son why few tool use email messages (and other informal formsof
communication) is because they are difficult to correlate toother
types of information, and to answer questions posed by the user.
However, the informal forms of communication are being recorded,
and in the future, they could prove to be an important source of
valuable information.

We hope that this paper prompts discussion towards a common
nomenclature, and potentially, an ontology that can be usedto de-
scribe tools that mine software repositories. Another areathat we
believe should be considered is the selection of a set of applica-
tions that can serve as test cases or benchmarks (this has been al-
ready suggested during the previous Workshop in Mining Software
Repositories in 2004). It would then be possible to create a corpus
with copies of the software repositories, that can be sharedamong
the researchers; this will reduce the stress posed to the servers of
the projects that are to be mined.

Having a common set of benchmarks will also help to address an-
other problem in the area of mining software repositories. The ac-
tual task of retrieving “facts” from the repository is not consid-
ered to be an important research issue. Often, the act of mining
involves reverse engineering of the formats in which the data is
stored, scraping information from the Web, or trying to find some
regularity in the output of tools that access the repositories. In this
case (such as the syntactic and semantic analysis of source code) it
involves the use of tools created by other communities (suchas the
program analysis and comprehension communities); sometimes the
problem is getting the tools to work with the information retrieved
from a particular repository. The act of mining for facts is tedious
and error-prone. If the community agrees on a set of test cases,
the fact extraction can be done only once, and the resulting data
shared along with the copies of the repositories. This will allow re-
searchers more time to concentrate on the more important problems
related to the analysis and, correlation of this information always
keeping in mind the needs of the potential user.

5. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful
comments.

6. REFERENCES
[1] M. Chalmers, K. Rodden, and D. Brodbeck. The order of

things: Activity-centred information access. InProceedings
of 7th Intl. Conf. on the World Wide Web (WWW7), 1998.

[2] D. Čubranić and K. S. Booth. Coordinating open-source
software development. InEighth IEEE International
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 61–65, 1999.

[3] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. InProceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 82–91, 2004.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProceedings of the International Conference on
Software Maintenance, pages 23–32. IEEE Computer
Society Press, September 2003.

[5] D. M. German. Mining CVS repositories, the softChange
experience. In1st International Workshop on Mining
Software Repositories, 2004.

[6] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softChange. InProc. of the 16th
Internation Conference on Software Engineering and
Knowledge Engineering (SEKE 2004), pages 336–341, 2004.

[7] J. C. Grundy. Software architecture modeling, analysisand
implementation with SoftArch. Inthe Proceedings of the
25th Hawaii International Conference on System Sciences,
page 9051, 2001.

[8] C. Gutwin, R. Penner, and K. Schneider. Group awareness in
distributed software development. InProc. of the 2004 ACM
conference on Computer supported cooperative work, pages
72–81, 2004.

[9] M. Kersten and G. Murphy. Mylar: A degree-of-interest
model for IDEs. InProceedings of Aspect Oriented Software
Development, March 2005.

[10] R. Lintern, J. Michaud, M.-A. Storey, and X. Wu.
Plugging-in visualization: experiences integrating a
visualization tool with Eclipse. InProc. of the 2003 ACM
Symposium on Software Visualization, pages 47–56, 2003.

[11] H. Richter, G. D. Abowd, C. Miller, and H. Funk. Tagging
knowledge acquisition to facilitate knowledge traceability.
International Journal on Software Engineering and
Knowledge Engineering, 14(1):3–19, Feb. 2004.

[12] M. Robillard and G. Murphy. Feat: A tool for locating,
describing, and analyzing concerns in source code. In
Proceedings of 25th International Conference on Software
Engineering, May 2003.

[13] K. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining
a software developer’s local interaction history. In
Proceedings of 1st International Workshop on Mining
Software Repositories, 2004.

[14] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software space. InInternational Workshop on
Program Comprehension, 2005. To be presented.

[15] M.-A. Storey, D.Čubranić, and D. M. German. On the use of
visualization to support awareness of human activities in
software development:a survey and a framework. In
Proceedings of the 2nd ACM Symposium on Software
Visualization, 2005. To be presented.

[16] A. Walenstein. Observing and measuring cognitive support:
Steps toward systematic tool evaluation and engineering. In
Proc. of the 11th International Workshop on Program
Comprehension (IWPC’03), pages 185–195, 2003.

[17] A. Wexelblat. Communities through time: Using historyfor
social navigation. In T. Ishida, editor,Lecture Notes in
Computer Science, volume 1519, pages 281–298. Springer
Verlag, 1998.

[18] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance:
Version control knowledge extraction. InProc. 11th Working
Conference on Reverse Engineering, pages 90–99, 2004.

99

SCQL: A formal model and a query language for source
control repositories

Abram Hindle
Software Engineering Group

Department of Computer Science
University of Victoria

abez@uvic.ca

Daniel M. German
Software Engineering Group

Department of Computer Science
University of Victoria

dmg@uvic.ca

ABSTRACT
Source Control Repositories are used in most software projects
to store revisions to source code files. These repositories op-
erate at the file level and support multiple users. A general-
ized formal model of source control repositories is described
herein. The model is a graph in which the different entities
stored in the repository become vertices and their relation-
ships become edges. We then define SCQL, a first order,
and temporal logic based query language for source control
repositories. We demonstrate how SCQL can be used to
specify some questions and then evaluate them using the
source control repositories of five different large software
projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Version Control ; D.2.8 [Software En-
gineering]: Metrics—Process metrics

1. INTRODUCTION
A configuration management system, and more specifically,
a source control system (SCS) keeps track of the modifica-
tion history of a software project. A SCS keeps a record of
who modifies what part of the system, when and what the
change was.

Typically a tool that wants to use this historical information
starts by doing some type of fact extraction. These facts are
processed in order to create new information such as metrics
[9, 3] or predictors of future events [6, 7]. In some cases, this
information is queried or visualized [5, 10]. Some projects
store the extracted facts into a relational database ([8, 5, 2]),
and then use SQL queries to analyze the data. Others prefer
to use plain text files, and create small programs to answer
specific questions [9], or query the SCS repository every time
[10]. One of the main disadvantages of these approaches is
that querying this history becomes difficult. A query has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

to be translated from the domain of the SCS history to the
data model or schema used to stored this information. Also,
questions regarding the temporal aspects of the data are
difficult to express. Furthermore, there is no standard for
the storage or the querying of the data, making it difficult
for a project to share its data or its analysis methods with
another one.

When a developer completes a task it usually means that she
has modified one or more files. The developer then submits
these changes to the SCS, in what we call a modification
request, or MR (this process has also been called a transac-
tion). A MR is, therefore, atomic (conceptually the MR is
atomic, even though it might not be implemented as such by
the SCS system). Once the change is accepted by the SCS,
it creates a new revision for each file present in the MR.
Thus an MR is a set of one or more file revisions, commit-
ted by one developer. The SCS allows its users to retrieve
any given revision of a file, or for a given date, determine
what is the latest revision for every file under its control.

There are many SCSs available on the market. They can be
divided into two types: centralized repositories (like CVS)
and Peer-to-Peer repositories (such as BitKeeper, Darcs,
Arch). Even though they differ strongly in the way they
operate and store the tracked changes, they all track files
and their revisions. We will focus on CVS because there is
a large number of CVS repositories available to researchers.
We will, therefore, use the CVS nomenclature in this paper.
It is important to mention that our model and SCQL can
be applied to any SCS.

This paper is divided as follow: first we present an abstract
model to describe version control systems; second, we define
a query language, called SCQL, we end demonstrating how
it can be used to pose questions related to the source control
history in several mature, large projects.

2. MODEL
In order to create a language for the querying of a SCS we
first need to be able to describe its data model. This data
model will be used to formally describe the data available
in the SCS and to provide a uniform representation of the
information available across multiple SCSs. One of the re-
quirements of this model that is “time aware” and it is able
to represent the temporal relationships (“before”, “after”)
of the different entities stored in the SCS.

100

MR

RevisionAuthor

File

1

1

1

*

*

*

1

*

Figure 1: Cardinality and Directions of Edges in the
Model

2.1 Characteristic Graph of a Source Code
Repository

We represent an instance of a SCS as a directed graph. Enti-
ties such as MRs, Revisions, Files and Authors are vertices,
while their relationships are represented by edges. It is im-
portant that for any given instance of a SCS, there exists a
corresponding characteristic graph, and that given a query,
this query can be translated into an equivalent graph query
on its characteristic graph. As a consequence, the original
query will be answered by solving the graph query.

2.2 Entities
The model for SCQL contains four different types of entities:
MRs, Revisions, Files and Authors. See figure 1.

MRs model modification requests and correspond to the set
MR in the graph instance. MRs have attributes such as log
comments, timestamp, and a unique ID. We assume that
the timestamp of an MR is unique (derived from its earliest
revision), and that an MR is an atomic operation. There
exists an edge from each MR to the next MR in time (if one
exists). One edge extends from the MR to the author of its
revisions, and one edge is also created from the MR to each
of its revisions (an MR is not connected to more than one
revision of the same file).

Revisions correspond to the set of file revisions and are
denoted by Revision. Revisions are atomic in time with re-
spect to other revisions, thus they have unique timestamps
and they are assigned unique identifiers. They have at-
tributes such as the diff of the change, and the lines added
and removed. An edge extends from the revision to its au-
thor, and another one to the corresponding file. Revisions
are also connected to each other. An edge is created from
any given revision to each of its successor (the revision which
modified it), thus one revision can have multiple children (or
branches). Revision subgraphs are characterized as acyclic
stream-like graph which springs up from a single node. If a
revision merges a branch from another branch (or the main
development trunk), an edge will be created from the “pre-
decessor” revisions on both branch to the merged revision.

Files are represented as the subset of vertices File in the
graph. Files are the springs from which streams of revisions
flow. Files have attributes such as path, filename, directory,
and a unique full path name. Time-wise, files have unique
timestamps associated with the first revision made of a file
(this records the moment the file first appears in the graph).
Files are connected to by revisions as described above.

Table 1: Model Primitives
isaMR(φ) is φ an MR?

isaRevision(φ) is φ a Revision?
isaF ile(φ) is φ a File?

isaAuthor(φ) is φ an Author?
numberToStr(i) Represent i as a string.

length(φ) Length of the string φ
substrφ, k, l) Return a substring of φ of length l at k.

eq(φ, θ) are φ and θ equivalent strings?
match(φ, θ) is θ is a substring of φ?
isEdge(φ, θ) is there an edge from φ to θ?

count(S) counts the elements in a subset.
isAuthorOf(ψ, φ) is ψ an author of φ?

isF ileOf(τ, φ) is τ an File of φ?
ifMROf(φ, φ) is φ is an mr of φ?

isRevisionOf(θ, φ) is θ is a revision of φ?
revBefore(θ, θ2) is there is a revision path from θ to θ2?
revAfter(θ, θ2) is there is a revision path from θ2 to θ?

Authors are represented by the subset Author in the graph.
Authors have attributes such as user ID, name and email.
Time wise authors are associated to their first revision im-
plying their entry into the project. There is only one author
per MR and per Revision.

2.3 Formalizing the characteristic graph
Formally we define the characteristic graph G of a SCS as a
directed graph of G = (V,E) where

V = MR ∪ File ∪ Author ∪ Revision

E = (v1 ∈ MR, v2 ∈ MR) ∪ (v1 ∈ MR, v2 ∈ Revision)

∪ (v1 ∈ MR, v2 ∈ Author) ∪ (v1 ∈ Revision, v2 ∈ Revision)

∪ (v1 ∈ Revision, v2 ∈ Author) ∪ (v1 ∈ Revision, v2 ∈ File)

There are 6 data types in our model: Vertices represent-
ing entities; edges representing relationships; sets of entities
which abstract edges; numbers used for numerical questions;
strings are needed since much of the data in the repository
is string data; and Booleans which are necessary to prove
invariants exist. Table 1 provides a description of some of
the primitives that operate on these types.

We implement attributes using maps. Attributes can map
from entities to subsets, strings, numerics or Booleans. An-
other assumption is that the output of a mapping is only
valid if a node or edge of a correct type is used as an index
to the map. More attributes can be added at any time but
the attributed mentioned in section 2.2 are the expected at-
tributes. Attributes which are expected to return one entity
still return a subset. The motivation is to maintain uniform
access to entities while providing a method of abstracting
edge traversal. Since sets are returned we use plural func-
tion names. Attributes that are subsets of entities (edge
traversals) are described in table 2.

2.4 Extraction and Creation
The general algorithm for extracting and creating a graph
from a SCS is:

101

Table 2: Sub-domain Attributes
authors(φ ∈ MR) the author of the MR

revisions(φ ∈ MR) the revisions of the MR
files(φ ∈ MR) the files of the revisions of the MR

nextMRs(φ ∈ MR) next MR in time
prevMRs(φ ∈ MR) previous MR in time
mrs(θ ∈ Revision) MR related of the Revision

authors(θ ∈ Revision) the author of the revision.
files(θ ∈ Revision) the files of a the revision

nextRevs(θ ∈ Revision) Next revisions version-wise.
prevRevs(θ ∈ Revision) Previous revisions version-wise.

mrs(τ ∈ File) MRs of the Revisions of the file
revisions(τ ∈ File) Revisions of the file
authors(τ ∈ File) Authors of the revisions of the file.
mrs(ψ ∈ Author) MRs of the author.

revisions(ψ ∈ Author) Revisions of the author
files(ψ ∈ Author) Files of the revisions of the author

• Each file becomes a vertex in File.

• Each author becomes a vertex in s Author.

• Each revision becomes a vertex in Revision. Assign
revisions unique timestamps and connect each revision
its corresponding author and file.

• Create vertices for each MR. The MR inherits the
timestamp from its first file revision. Associate MR
to its author MR.

• Each MR is then connected to the next MR (according
to their timestamp), if it exists.

• For each file, connect each revision to the next revision
of the file, version-wise. If branching is taken into ac-
count, only revisions in the same branch are connected
in this manner, and then branching and merging points
are connected.

When this algorithm terminates, the result is a characteris-
tic graph of the instance of SCS.

CVS does not record branch merges or modification requests,
but some heuristics have been developed to recover both [2,
4, 11]. Branch-merge and MR recovery in CVS are not ac-
curate, and therefore the extracted SCS graph is an inter-
pretation rather than an exact representation of the SCS.

An example of the SCS graph is depicted in figures 2 and 3.
The vertices corresponding to the revisions in 2 and 3 are
the same and they are shown in two figures to avoid clutter.

3. QUERY LANGUAGE
The rationale for our model is to provide a basis for a query
language for a SCS. We are interested in a language that
has the following properties:

• It is based on primitives that correspond to the actual
data and relationships stored in a SCS. We want a
language that directly models files, authors, revisions,
etc.

MR 1 MR 2 MR 3 MR n...

author1 author2

File1 File2 File3 File j-1 File j

Revision1 Revision2 Revision3 Revision4Revision5 Revision x+1Revision x

Figure 2: Example Model Subgraph

Revision1.1 Revision1.2 Revision1.3

Revision1.3.1 Revision1.3.2

Revision1.4 Revision1.5

branch

merge

Figure 3: Example Revision Subgraph

• It has the ability to take advantage of the time dimen-
sion. We want to able to pose questions that include
predicates such as “previous”, “after, “last time”, “al-
ways”, “never”. For example, “has this file always
been modified by this author?”, “find all MRs do not
include the following file”, “find the file revision af-
ter this other one”, “find the last revisions by a given
author”, etc.

• It is computable. We need confidence that if a query
is posed, it can be evaluated.

• It is expressive. We are interested in a language that
is able to express a wide range of queries.

The characteristic graph of a source code repository is the
basis for this language. Thus our language is built such that
any query expressed in it can be translated to a query of the
characteristic graph.

First order predicate logic will serve as a basis for our query
language, as it can handle both graph semantics and “be-
fore and after” aspects of temporal logic [1]. The language
is designed to query the model, not to provide a general pur-
pose programming language. We have focused in evaluating
decision queries with this language (those which answer is
either yes or not), but we also support other types of queries
that return other types of data (such as the id of an author,
the number of files modified, or a set of files).

The language has a rich syntax, but due to a lack of space
we only summarize its main features in table 3.

Identifiers are unbound variables that reference entities. Us-
ing a variable, one can access the attributes of the referenced

102

entities (x.attribute). Identifiers are only created by a scop-
ing operator such as an Anchor, Universal Quantifiers, Exis-
tential Quantifiers or Selection Scope. These scopes iterate
over elements in a subset by applying a predicate to each
element.

Existential and Universal scopes iterate through an entire
subset until a preposition returns either true or false. For
empty subsets universal scopes return true and existential
scopes return false.

Subset/Select based scopes effectively iterate through all the
elements in set of entities such as MR, Revision, File ,
Author selecting entities to form a subset. A subset can
only be the same size or smaller than the set it is testing.
These subsets may only have 1 type of entity. Anchor scopes
are like select- based scopes, but are meant to access a single
element in constant time. Scope operators that are “before”
or “after” scopes iterate through their respective subsets in
sequential order from first to last.

3.1 Example Queries
We now present three different queries and show how they
are expressed in SCQL.

Example 1: Is there an author a who only modifies files
that author b has already modified? This query can be for-
mally expressed as:

∃a, b ∈ Author s.t. a 6= b∧
∀r ∈ Revision s.t. isAuthor(a, r) =⇒
∃rb ∈ Revision s.t. before(rb, r)∧
isAuthor(b, rb) ∧ r.file = rb.file

We are trying to find two different authors such that for all
revisions of one author, there exists a previous revision (by
the second author) to the same file. The SCQL query first
finds two authors and makes sure they are different. Then it
iterates through all the revisions of author a. Per each revi-
sion, it checks if the file of that revision has another previous
revision that belongs to author b. a.revisions gets all
the revisions related to the author a while isAuthorOf(b

,r2) tests if b is the author of the revision of the file f .

E(a, Author) {

E(b, Author) {

a!=b &&

A(r, a.revisions) {

A(f, r.file) {

Ebefore(r2, f.revisions, r) {

isAuthorOf(b, r2)

}

}

}

}

}

Example 2: Compute the proportion of MRs that have
a unique set of files which have never appeared as part of
another MR before. With this query we are want to find
out how variable are the sets of files modified in MRs. We

hypothesize that an old, stable project will have a small
proportion, while a project that is still growing, and contin-
ues to have structural changes will have a larger proportion.
This query can be easily expressed directly in SCQL as:

1 - (Count(mr,MR) {

Ebefore(a,MR,mr)) {

A(f,mr.files) {

isFileOf(f,a)

}

}

} / count(MR)

It iterates over the set of all MRs, counting only those that
have a previous MR that modifies all its files too. Then it
counts all MRs, and computes the desired proportion.

Example 3: Is there an Author whose changes stay within
one directory?

∃a ∈ Author s.t.
∀f ∈ File s.t. isAuthorOf(a, f) =⇒
∀f2 ∈ Files.t.isAuthorOf(a, f2) =⇒

directory(f) = directory(f2)

In this case we want to know if there exists an author such
that for all pairs of files modified by this author, they are
both in the same directory. This query can be written in
SCQL as:

E(a, Author) {

A(f, author.files) {

A(f2, author.files) {

eq(f.directory, f2.directory)

}

}

}

4. EVALUATION
We have built an implementation for SCQL. In order to
demonstrate the effectiveness of SCQL we ran the 3 example
queries against five different projects: Evolution (an Email
Application), Gnumeric (a spreadsheet), OpenSSL (A Se-
cure Socket Layer library), Samba (Linux support for Win32
network file systems), and modperl (a module for Apache
that acts like a Perl Application server). The table 4 pro-
vides the output of the 3 example queries for each of these
projects. We include the size of the MR set (number of
MRs) and the File set too.

Table 4: Evaluation of the 3 example queries
evolution gnumeric openssl samba modperl

Ex 1 true true false false true
Ex 2 0.002 0.004 0.003 0.002 0.015
Ex 3 false false false false true
|File| 4748 3685 3698 4246 300
|MR| 18573 11337 10847 27413 1398

103

Table 3: Language Description
Name Language Explanation
MR MR Set of Modification Requests
Revision Revision Set of Revisions
Author Author Set of Authors
File File Set of Files
Universal A(φ, δ){P (φ)} For all φ in the set δ is the predicate P (φ) true?
Existential E(φ, δ){P (φ)} Does φ exist in set δ where predicate P (φ) is true?
Attribute φ.ζ Given an entity φ return its attribute ζ
Function γ(P) Evaluate the function γ with P as the parameter
Universal Before Abefore(φ, δ, θ){P (φ, θ)} For all φ in δ before θ is the binary predicate P (φ, θ) true?
Universal After Aafter(φ, δ, θ){P (φ, θ)} For all φ in δ after θ is P (φ, θ) true?
Existential Before Ebefore(φ, δ, θ){P (φ, θ)} Does φ exist in δ before θ where P (φ, θ) is true?
Existential After Eafter(φ, δ, θ){P (φ, θ)} Does φ exist in δ after θ where P (φ, θ) is true?
Subset S(φ, δ){P (φ)} Create a subset of δ, such that for each element φ in that subset,

P (φ) is true.
Universal From Subset A(θ, S(φ, δ){P (φ)}){Q(θ)} For each elements θ in the set δ for which P (φ) is true, Q(θ) is

also true
Anchor Select Anchor(φ,MR,′′mrid′′)P (φ) Evaluate P (φ) on the entity of type MR with id “mrid”
count count(δ) Count the number of elements of the subsets δ
Sum Sum(φ, δ){P (φ)} Summate the predicate P (φ) for all φ in δ
Average Avg(φ, δ){P (φ)} Get the average of the predicate P (φ) for all φ in δ
Count Count(φ, δ){P (φ)} Count the number of elements φ in δ where P (φ) is true.

5. SUMMARY
This paper presents a formal model to describe SCSs. This
model is then used to define a query language, SCQL, that
can be used to pose queries on the SCSs. The objective
of SCQL is to be domain specific and to support temporal
logic operators in those queries. We have demonstrated the
use of SCQL with example queries, and demonstrated their
effectiveness by running those queries against the SCS of 5
different large, mature software projects.

While it is possible to use other query languages to investi-
gate SCSs (such as SQL and XQuery) we believe that SCQL
has 2 important properties that these languages are do not.
First, it is domain specific: the queries refer to entities in the
repository, and second, it supports temporal logic operators.
While it is possible to implement temporal logic operations
in SQL or XQuery, it might result in overly complex expres-
sions.

We expect to use SCQL in the exploration of the evolution of
software and to help us compute metrics on SCS repositories.

6. REFERENCES
[1] S. Abiteboul, L. Herr, and J. Van den Bussche.

Temporal versus first-order logic to query temporal
databases. pages 49–57, 1996.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Proceedings of the International
Conference on Software Maintenance (ICSM 2003),
pages 23–32, Sept. 2003.

[3] D. German. An empirical study of fine-grained
software modifications. In 20th IEEE International
Conference on Software Maintenance (ICSM’04), Sept
2004.

[4] D. M. German. Mining CVS repositories, the
softChange experience. In 1st International Workshop
on Mining Software Repositories, pages 17–21, May
2004.

[5] D. M. German, A. Hindle, and N. Jordan. Visualizing
the evolution of software using softchange. In
Proceedings SEKE 2004 The 16th Internation
Conference on Software Engineering and Knowledge
Engineering, pages 336–341, 3420 Main St. Skokie IL
60076, USA, June 2004. Knowledge Systems Institute.

[6] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s
weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In 20th IEEE
International Conference on Software Maintenance
(ICSM’04), Sept 2004.

[7] A. E. Hassan and R. C. Holt. Predicting change
propagation in software systems. pages 284–293,
September 2004.

[8] Y. Liu and E. Stroulia. Reverse Engineering the
Process of Small Novice Software Teams. In Proc. 10th
Working Conference on Reverse Engineering, pages
102–112. IEEE Press, November 2003.

[9] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case
Studies of Open Source Software Development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1–38, July 2002.

[10] X. Wu. Visualization of version control information.
Master’s thesis, University of Victoria, 2003.

[11] T. Zimmermann and P. Weisgerber. Preprocessing cvs
data for fine-grained analysis. In 1st International
Workshop on Mining Software Repositories, May 2004.

104

 Integration and Collaboration

105

Developer identification methods for integrated data from
various sources

Gregorio Robles, Jesus M. Gonzalez-Barahona
{grex, jgb}@gsyc.escet.urjc.es

Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos

Madrid, Spain

ABSTRACT
Studying a software project by mining data from a sin-
gle repository has been a very active research field in soft-
ware engineering during the last years. However, few efforts
have been devoted to perform studies by integrating data
from various repositories, with different kinds of informa-
tion, which would, for instance, track the different activities
of developers. One of the main problems of these multi-
repository studies is the different identities that developers
use when they interact with different tools in different con-
texts. This makes them appear as different entities when
data is mined from different repositories (and in some cases,
even from a single one). In this paper we propose an ap-
proach, based on the application of heuristics, to identify
the many identities of developers in such cases, and a data
structure for allowing both the anonymized distribution of
information, and the tracking of identities for verification
purposes. The methodology will be presented in general,
and applied to the GNOME project as a case example. Pri-
vacy issues and partial merging with new data sources will
also be considered and discussed.

1. INTRODUCTION
Most research in the area of mining software repositories

has been performed on a single source of data. The reason
for this is that tools are usually targeted towards accessing
a specific kind of data, which can be retrieved and analyzed
uniformly. Data mining for control versioning systems [11],
bug-tracking systems, mailing lists and other sources is cur-
rently state of the art. The focus of these studies is more on
the analysis than in the data extraction process, which can
be automated, as has already been discussed [2, 9].

However, there is a wide interest in considering data from
several sources and integrating them into a single database,
getting richer evidence from the observed matter [5]. The
data gathered following this approach can be used for study-
ing several kinds of artifacts relevant to the software develop-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

ment process, such as source code files or, as we will discuss
in this paper, developers.

As an example of the usefulness of this approximation,
let’s consider collaboration in libre software1 projects, which
is an active research field. Libre software is produced in part
(in many cases a large part) by volunteers, which makes it
difficult to predict the future evolution. However, it has
at least in some cases produced high-quality software, used
by millions of persons around the world. It has been shown
that this collaboration follows a Pareto law for commits [11],
source code contributions [4], bug reports [8] or mailing
list posts [6]; i.e. a small amount of developers of around
20% is responsible for a huge amount of the produced ar-
tifacts (around 80%). But although this research on dif-
ferent sources coincide in results, there is still no evidence
of coherence. In other words, although it is known that
the Pareto distribution appears in several data sources for
a given project, are the most active actors for each of those
sources (mailing lists, code repositories, bug report systems,
etc.) the same ones?

In the specific case of merging information about develop-
ers from different repositories, the main difficulty is caused
by the many identities that they use from repository to
repository, and even for the same one, making tracking diffi-
cult. That is the reason why we need methods and tools that
can find the different identities of a given developer. These
methods, and the data they produce, should be designed to
be sharable among research groups, not only for validation
purposes but also for enabling the merging of partial data
obtained by different teams from different sources.

In general, any study considering individuals in libre soft-
ware projects, even when using a single data source, is sen-
sible to identity variety. Before performing any analysis on
the data set, it is necessary to merge the identities corre-
sponding to the same person. This is for instance the case
in the promising case of clustering [3] and social network
analysis [7], which are trying to get insight in the structure
of libre software projects.

The structure of this paper is as follows. The next section
deals with the kinds of identities which are usually found in
software-related repositories. The third section is devoted to
the extraction of data, its structure and verification. Section

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

106

four deals with heuristics for matching identities. Handling
data about developers raises some privacy concerns, which
are discussed in the fifth section, including some suggestions
and solutions for sharing data without violating anonymity.
We finish the paper with a section on conclusions and further
work. We also include two appendixes, one with some results
of applying the methodology to some GNOME repositories,
and the other to post-matches analysis.

2. IDENTITIES IN SOFTWARE REPOSITO-
RIES

Libre software developers, or more broadly, participants
in the creation of libre software (from now on actors) usually
interact with one or more Internet-based systems related to
the software production and maintenance, some of which
are depicted in Figure 1. These systems usually require
every actor to adopt an identity to interact with them. This
identity is usually different for every system, and in some
cases a given author can have more than one identity for
the same system, sometimes successive in time, sometimes
even contemporary.

Figure 1: Different systems with which an actor may

interact.

Some kinds of identities are the following (summarized in
Table 1):

• An actor may post on mailing lists with one or more e-
mail addresses (some times linked to a real life name).

• In a source file, an actor can appear with many iden-
tities: real life names (such as in copyright notices),
e-mail addresses, RCS-type identifiers (such as those
automatically maintained by CVS), etc.

• The interaction with the versioning repository occurs
through an account in the server machine, which ap-
pears in the logs of the system.

• Bug tracking systems require usually to have an ac-
count with an associated e-mail address.

Other sources may include entries in weblogs, forums,
blogs, etc. Although they are not considered in this study,
the approach proposed could easily include them.

Type Data Source Primary Identities
(1) Mailing lists username@example.com
(1) Mailing lists Name Surname
(2) Source Code (c) Name Surname
(2) Source Code (c) username@example.com
(2) Source Code $id: username$
(3) Versioning System username
(4) Bug Tracking username@example.com

Table 1: Identities that can be found for each data

source.

Given the various identities linking an actor to his actions
on a repository, our goal is to determine all which correspond
to the same real person. Basically we can classify these
identities in two types: primary and secondary.

• Primary are mandatory. For instance, actors need an
e-mail address to post a message to a mailing list.
Mailing lists, versioning system and bug tracking sys-
tem require to have at least a mandatory identity in or-
der to participate (although in some exceptional cases
this can be done anonymously). Source code does not
have primary identities, except in some special projects
where the copyright notice or some other authorship
information is mandatory.

• Secondary are redundant. For instance, actors may
provide their real-life name in the e-mails they send,
but this is not required. Secondary identities usually
appear together with primary identities, and may help
in the identification process of actors.

Note that the relationships between actors and reposito-
ries have not to be unique: an actor could have one or more
different identities in any repository. Even in cases such as
CVS repositories, a given actor may change the username of
his account, and of course the same actor could have differ-
ent usernames in different CVS repositories.

3. DATA FETCHING, STRUCTURE AND VER-
IFICATION

Figure 2 shows a glimpse of the data structures used to
learn the identities that correspond to the same person in
several data sources.

All the identities are introduced into the database in the
Identities table. This table is filled by directly extracting
identities (using heuristics to locate them) from software-
related repositories. Besides the identity itself, this table
stores identifiers for the repository (data source) where it
was found, which could be of value not only in the lat-
ter matching process, but also for validation and track-back
purposes. The kind of identity (login, email address, “real
name”) is also stored, to ease the automatic processing.
Hashes of identities are added to provide a mechanism which
can be used to deal with privacy issues, as will be described
in a later subsection.

When extracting identities, sometimes relationships among
them can be inferred. For instance, a real name can be next

107

to an e-mail address in a From field in a message. Those
relationships are captured as entries in the Matches table,
which will be the center of the matching (identification of
identities of the same person) process. The ‘evidence’ field
in this table provides insight about every identified match.
As the process we are performing is mostly automatic, the
value of ‘evidence’ will contain the name of the heuristic
that has been used. This will include automatic heuristics,
but also human inspection and verification. Sometimes, the
information is not enough to ensure that the match is true
for sure, and that is the reason why a field showing the es-
timated probability has been added. Fields that have been
verified by humans with absolute certainty will be assigned
a probability of 1.

With the information stored in Identities and Matches,
the identification process may begin. Unique actors are iden-
tified with information in Matches, filling the Identifications
table, and choosing unique person identifiers. Other infor-
mation in the Persons table can be filled directly with data
from the repositories or from other sources.

4. MATCHING IDENTITIES IN MORE DE-
TAIL

We will usually have many identities for every actor. For
instance, we can have name(s), username(s) and e-mail ad-
dress(es). Every actor considered will have at least one of
them, although possibly he may be identified with several,
as is shown in Figure 3.

Figure 3: An actor with three different kinds of iden-

tities

Our problem is how to match all the identities that corre-
spond to the same actor. In other words, we want to fill the
Matches table with as much information as possible (and as
accurate as possible). As already mentioned this is done us-
ing heuristics. Let’s expose some of them with some detail:

• In many cases it is common to find a secondary iden-
tity associated to a primary one. This happens often in

mailing lists, source code authorship assignments and
bug tracking system. In all these cases, the primary
identity (usually an e-mail address) may have a ‘real
life’ name associated to it. Consider, for instance, Ex-
ample User <username@example.com>, which implies
that Example User and <username@example.com> cor-
respond to the same actor. GPG key rings can also be
a useful source of matches. A GPG key contain a list
of e-mail addresses that a given person may use for
encryption and authentication purposes. GPG is very
popular in the libre software community and there ex-
ist GPG servers that store GPG keys with all these
information.

• Sometimes an identity can be built from another one.
For instance, the ‘real life’ name can be extracted
in some cases from the e-mail username. Many e-
mail addresses follow a given structure, such as nsur-
name@example.com, name.surname@example.com or
name surname@example.com. We can easily infer in
those cases the ‘real life’ name of the actor.

• In many cases one identity is a part of some other.
For instance, it is common that the username obtained
from CVS is the same as the username part of the e-
mail address. This can be matched automatically, and
later verified by other means. This is one of the more
error-prone heuristics, and is of course not useful for
very popular usernames like ‘joe’. But despite these
facts, it has proven to be very useful.

• Some projects or repositories maintain specific infor-
mation that can be used for matching (for instance,
because a list of contributors is maintained). As an
example, the KDE project maintains a file which lists,
for every person with write access to the CVS, his
‘real life’ name, his username for CVS and an e-mail
address. Other similar case are developers registered
in the SourceForge.net platform, who have a personal
page where they may include their ‘real life’ name.

Of course this is not an exhaustive list, and combinations
of the described heuristics can be used. For instance, a
mixed approach could benefit from the data in Changelog
files [1] for finding identity matches.

Usually, the fraction of false positives for matches can be
minimized by taking into account the project from which
the data was obtained. If we have a ‘joe’ entry as user-
name for the CVS repository in an specific project, and in
that same project we find somebody whose e-mail address is
joe@example.com (and no other e-mail address that could
be suspicious of being from a ‘joe’) then there is a high
probability that both are identities of the same actor.

In any case, the fraction of false positives will never be zero
for large quantities of identities. Therefore, some heuris-
tics are specifically designed for cleaning the Matches ta-
ble (eliminating those entries which are not correct, despite
being found by an heuristic) and verification, including hu-
man verification. In some cases, the help from an expert
that knows about the membership of a project, for instance,
should be of great help.

But even after cleaning and verification, some matches
will be false, and some will be missing, which can cause
problems. However, since we are interested in using the

108

Figure 2: Main tables involved in the matching process and identification of unique actors

collected data for statistical purposes, this is not a big issue
provided the error rate is small enough.

5. PRIVACY ISSUES
Privacy is of course an important concern when dealing

with sensible data like this. Although all the information
used is public, and it hardly contains any private data, the
quantity and detail of the information available for any sin-
gle developer after processing may cause privacy problems.
Therefore, we have devised a data schema which allows both
for the careful control of who has access to linking data to
identified real persons, and for the distribution of informa-
tion preserving anonymity. In the latter case, the informa-
tion can be distributed in such a way that real persons are
not directly identifiable, but new data sets can be, however,
combined with the distributed one. This will for sure allow
for a safe exchange of information between research groups.

For this purpose, the hashes of identities serve as a fire-
wall. They are easy to compute from real identities, but
are not useful for recovering them when only the hashes are
available. Therefore, the Matches, Identifications and Per-
sons tables can be distributed without compromising the
real identities of developers as a whole. However, new data
sets can be combined. Assuming a research group has a sim-
ilar schema, with some identities found, the corresponding
hash can be calculated for any of them and it may be looked
up in the Matches table. Of course this will not be useful
in many cases for finding new matches, but it would always
allow to link an identity (and the data associated with it) to
an actor in the Persons table. Therefore, any development
data distributed using hash identities instead of developer
names can be safely shared (but see below).

Although hashes will make it impossible to track real per-
sons from the distributed data, it is still possible to look for
certain persons in the data set. By hashing the usual iden-
tifiers of those persons, they can be found in the Matches
table, and their identity is thus discovered. That is the
reason why although distributing hashes to other research
groups under reasonable ethical agreements is acceptable,
probably it is not to do the same for anyone.

To avoid this problem, our schema has still a second level
of privacy firewall: the person identifier in the Persons table.
This identifier is given in such a way that it cannot be used

in any way to infer the identities of an actor without having
access to the Identifications table. Therefore it is enough to
key all development data with this person identifiers, and
distributing only the Persons table in addition to that data
to ensure the full privacy of the involved developers.

Of course, even in this latter case somebody could go to
the software repositories used to obtain the data, and try to
match the results with the distributed information. But this
is an unavoidable problem: a third party can always milk
the same repositories, and obtain exactly the same data,
including real identities. In fact, this is the basis of the
reproducibility of the studies.

6. CONCLUSIONS AND FURTHER WORK
Actors in libre software projects may use many different

identities when interacting with different systems related to
the development (and even with just a single one). When
studying repositories related to libre software development
it is very important to find those corresponding to the same
person, so that actions can be assigned to the corresponding
actor.

In this paper we have presented a design for dealing with
this problem, and a methodology, based on heuristics, to
identify as accurately as possible the different identities of
the involved actors. For that, we use information stored in
the repositories, and rely on some properties of the identi-
fiers. This information can also be used to infer some per-
sonal information, such as the gender or the nationality (as
is shown in appendix).

We have also discussed how privacy issues can be dealt
with in our schema, including the distribution of anonymized
information about the development, and have presented some
results of performing the described study on some reposito-
ries of the GNOME project (in appendix).

We are currently testing our approach with larger data
sets from several projects at once, and also starting to use
it for sharing development data with other research groups.
In the future, we are planning to include the functionality
described in our GlueTheos tool [10], and to use it widely to
obtain estimations of the number of people involved in libre
software development, and their activities. We expect to use
this data in combination with data from surveys and other
sources to get a more complete view of the libre software

109

development landscape.

7. ACKNOWLEDGEMENTS
This work has been funded in part by the European Com-

mission, under the CALIBRE CA, IST program, contract
number 004337, by the Universidad Rey Juan Carlos un-
der project PPR-2004-42 and by the Spanish CICyT under
project TIN2004-07296.

8. REFERENCES
[1] A. Capiluppi, P. Lago, and M. Morisio. Evidences in

the evolution of os projects through changelog
analyses. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, 2003.

[2] D. German and A. Mockus. Automating the
measurement of open source projects. In Proceedings
of the 3rd Workshop on Open Source Software
Engineering, Portland, USA, 2003.

[3] R. A. Ghosh. Clustering and dependencies in
free/open source software development: Methodology
and tools. First Monday, 8(4), Apr. 2003.

[4] R. A. Ghosh and V. V. Prakash. The orbiten free
software survey. First Monday, 7(5), May 2002.

[5] J. M. Gonzalez-Barahona and G. Robles. Getting the
global picture. In Proceedings of the Oxford Workshop
on Libre Software 2004, Oxford, UK, June 2004.

[6] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project:
Gnome. Information Systems Journal, 12(1):27–42,
2002.

[7] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
cvs repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
UK, 2004.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[9] G. Robles, J. M. Gonzalez-Barahona, J. Centeno,
V. Matellan, and L. Rodero. Studying the evolution of
libre software projects using publicly available data. In
Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 111–115, Portland, USA,
2003.

[10] G. Robles, J. M. Gonzalez-Barahona, and R. A.
Ghosh. Gluetheos: Automating the retrieval and
analysis of data from publicly available software
repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
Scotland, UK, 2004.

[11] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS),
Edinburg, Scotland, UK, 2004.

APPENDIX
A. A CASE STUDY: GNOME

To debug and complete our methodology, we have applied
it to the data from several real libre software repositories.
One of the most complete studies we have performed to
date has been on the GNOME project, retrieving data from
mailing lists, bug tracking system (including bug reports
and comments) and from the CVS repository. Next, we
offer some results from this study:

• 464,953 messages from 36,399 distinct e-mail addresses
have been fetched and analyzed.

• 123,739 bug reports, from 41,835 reporters, and 382,271
comments from 10,257 posters have been retrieved from
the bug tracking system.

• Around 2,000,000 commits, made by 1,067 different
commiters have been found in the CVS repository.

• From these data, 108,170 distinct identities have been
identified.

• For those distinct identities, 47,262 matches have been
found, of which 40,003 were distinct (therefore, our
Matches table contains that number of entries).

• Using the information in the Matches table, we have
been able of finding 34,648 unique persons.

This process has been statistically verified by selecting
a sample of identities, looking by hand for matches and
comparing the results to the corresponding entries in the
Matches table. Currently we are completing the Persons
table, and performing gender and nationality analysis.

B. AUTOMATIC (POST-IDENTIFICATION)
ANALYSIS

The reader has probably noted that the Persons table in
Figure 2 includes some fields with personal information. We
have devised some heuristics to infer some of them from data
in the repositories, usually from the structure of identities.
For instance, nationality can be guessed by several means:

• Analyzing the top level domain (TLD) of the various
e-mail addresses found in the identities could be a first
possibility. The algorithm in this case consists of listing
all e-mail addresses, extracting the TLD from them, re-
jecting those TLD that cannot be directly assigned to
a country (.com, .net, .org, etc.) or those who are from
“fake” countries (.nu, etc.), and finally looking at the
remaining TLDs and count how often they occur. The
TLD that is more frequent gives a hint about the na-
tionality of the person. Of course this heuristic is spe-
cially bad for US-based actors (since they are not likely
to use the US TLD), and for those using .org or .com
addresses, quite common in libre software projects.

• Another approach is to us whois data for the second
level domain in e-mail address, considering that the
whois contact information (which includes a physical
mail address) is valid as an estimator of the country of
the actor. Of course, this is not always the case.

Other case example of information which can be obtained
from identities is the gender. Usually we can infer the gen-
der from the name of the person. However, in some cases
it depends on the nationality, since some names may be as-
signed to males in one country and to females in another.
This is for instance the case for Andrea, which in Italy is a
male name while in Germany, Spain and other countries is
usually for females.

110

Accelerating Cross-Project Knowledge Collaboration
Using Collaborative Filtering and Social Networks

Masao Ohira Naoki Ohsugi Tetsuya Ohoka Ken–ichi Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, JAPAN 630-0192
tel.+81(743)-72-5318 fax.+81(743)-72-5319

{masao, naoki-o, tetsuy-o, matumoto}@is.naist.jp

ABSTRACT
Vast numbers of free/open source software (F/OSS) develop-
ment projects use hosting sites such as Java.net and Source-
Forge.net. These sites provide each project with a variety
of software repositories (e.g. repositories for source code
sharing, bug tracking, discussions, etc.) as a media for com-
munication and collaboration. They tend to focus on sup-
porting rich collaboration among members in each project.
However, a majority of hosted projects are relatively small
projects consisting of few developers and often need more
resources for solving problems. In order to support cross-
project knowledge collaboration in F/OSS development, we
have been developing tools to collect data of projects and
developers at SourceForge, and to visualize the relationship
among them using the techniques of collaborative filtering
and social networks. The tools help a developer identify
“who should I ask?” and “what can I ask?” and so on. In
this paper, we report a case study of applying the tools to
F/OSS projects data collected from SourceForge and how ef-
fective the tools can be used for helping cross-project knowl-
edge collaboration.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Collaborative computing,
Computer–supported cooperative work, Organization Design,
Web-based interaction

General Terms
Management, Measurement, Human Factors

Keywords
Knowledge Collaboration, Social Networks, Collaborative
Filtering, Visualization Tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00.

1. INTRODUCTION
Vast numbers of free/open source software (F/OSS) de-

velopment projects use hosting sites such as Java.net and
SourceForge.net. These sites provide each project with a
variety of software repositories (e.g. repositories for source
code sharing, bug tracking, discussions, etc.) which can be
seen as knowledge repositories for software development in
the aggregate. Many researchers focus on exploiting such
the repositories for supporting software development nowa-
days [4, 9].

While each project can accumulate its own knowledge
through software development into the repositories easily,
the “freely accessible” knowledge across projects is not sup-
ported sufficiently. In order to help cross-project knowledge
collaboration in F/OSS development, we have been develop-
ing tools to collect data of projects and developers at Source-
Forge, and to visualize the relationship among them using
the techniques of collaborative filtering and social networks.
The tools help a developer identify “who should I ask?” and
“what can I ask?” and so on.

In what follows, we first discuss the need for supporting
cross-projects knowledge collaboration based on our analysis
of SourceForge. Then we describe the procedure of mining
software repositories at SourceForge using our tools. In the
next section, we report a case study of applying Graphmania
to the F/OSS projects data collected from SourceForge and
illustrate how effective the tool can be used for helping cross-
project knowledge collaboration.

2. NEED FOR KNOWLEDGE COLLABO-
RATION ACROSS PROJECTS

Recent studies on F/OSS communities revealed that F/OSS
communities needed further developers and people’s contri-
bution to software development. For instance, [8] reported
only 4% of developers in the Apache community created
88% of new code and fixed 66% of defects. From a total of
196 developers in the Ximian project, 5 developers account
for 47% of the modification requests (MRs), while 20 ac-
count for 81% of the MRs, and 55 have done 95% of them
[3]. 4% of members account for 50 percent of answers on a
user-to-user help site [5].

Projects with a large proportion of non-contributors have
difficulty providing needed services such as bug fixes and
software enhancements to all members [1]. The existence of
highly motivated members would be the key success factor
of a F/OSS project[2]. As an approach to motivate members

111

Table 1: Number of Projects with n Developers
NUMBER OF NUMBER OF (%)
DEVELOPERS PROJECTS

0 278 0.3
1 60665 66.7
2 14151 15.6
3 5854 6.4
4 3222 3.5

Over 5 6732 7.4
TOTAL 90902 100

Table 2: Number of Developers on p Projects
NUMBER OF NUMBER

PARTICIPATING OF (%)
PROJECTS DEVELOPERS

1 100408 77.3
2 18753 14.4
3 5980 4.6
4 2350 1.8

Over 5 2406 1.8
TOTAL 129897 100

of online communities, some theories such as social capital
(e.g. ExpertsExchange1) and social networks [6, 12] have
attracted attention recently.

Relatively small projects registered at hosting sites are
confronted with more difficulties than such the large projects
mentioned above (e.g. the Apache project), because (1)
those projects consist of few developers and contributors
generally and (2) the hosting sites provide a variety of tools
for rich communication and collaboration among members
in each project but do not provide them with tools for ex-
changing or sharing problem-solving knowledge across projects
directly.

To confirm the issue related to (1), we collected and an-
alyzed the data of over 90,000 projects and about 130,000
developers2 at SourceForge in February 2005. Table 1 shows
the number of projects with n developers. 66.7% of overall
projects at SourceForge had only one developer. The maxi-
mum of number of developers in one project was 272. Table
2 shows the number of developers on p projects. 77.3% of
overall developers at SourceForge belonged to one project.
The maximum of number of projects a developer joined was
51.

These results are very similar to the results of the social
networks analysis in SourceForge in February 2002 [7]. As
Madey et al. mentioned in [7], these results indicate that a
small number of developers at SourceForge have rich links
to others (i.e. the “rich–get–richer” effect) but a major-
ity of developers does not have sufficient links to ask other
projects’ developers to help them solve problems which hap-
pened in their own projects. We believe that it is use-
ful to give developers in small projects means to access
other developers and projects that possess the information

1http://www.experts-exchange.com
2The total number of registered users at SourceForge.net are
over 1,000,000. We collected the data of members who are
participating in projects actually.

Table 3: Project Information (e.g. the phpMyAd-
min Project at SourceForge.net)

ATTRIBUTES EXAMPLE
project name phpMyAdmin
description phpMyAdmin is a tool written in

PHP intended to handle the ad-
ministration of MySQL ...

num. of developers 8
keywords php, databases, ...

program lang. PHP
operating system OS Independent

license GPL
status 5 – Production/Stable

registered 2001/3/18 02:07
intended audience Developers, End Users/Desktop,

System Administrators
user interface Web-based

topics Front-Ends, Dynamic Content,
Systems Administration

Table 4: Developer Information (e.g. One of authors
registered at SourceForge.jp)

ATTRIBUTES EXAMPLE
login name Ohsugi
public name Naoki Ohsugi
email address ohsugi at users.sourceforge.jp

site member since 2002/6/10 22:16
group member of NAIST Collaborative Filtering

Engines, Game-R, Bullflog
C/C++: Competent: 5 yr–10 yr

skill inventory Perl: Competent: 5 yr–10 yr
Java: Want to Learn: 2 yr–5 yr

or knowledge relevant to solving problems. The next sec-
tion describes the procedure of mining software repositories
at SourceForge using our tools and then illustrates how the
tools works.

3. GRAPHMANIA: A TOOL FOR HELPING
KNOWLEDGE COLLABORATION

In order to support cross-project knowledge collaboration,
we have been developing Graphmania, a tool for visualiz-
ing the relationship among developers and projects using
the techniques of collaborative filtering and social networks.
The tool helps a developer identify “who should I ask?” and
“what can I ask?” and so on.

3.1 Data Collection
Using an autopilot tool for SourceForge.net3 written in

Ruby, we have collected two data sets; about 90,000 projects’
information (table 3) and 130,000 developers’ information
(table 4). In what follows, for simplicity, we suppose that
the data we use in this paper is project name and num.
of developers from the project info. , and login name and
group members of from the developer info. only (other
attributes will be used in the near future).

3available from the third author upon your requests

112

developerproject developerproject
Figure 1: Developer-project networks (numbers in-between edges are the degree of similarity between nodes)

3.2 Social Network Analysis
In our approach, we can present three types of collabo-

rative social networks using above the data; developer net-
works, project networks, and developer-project networks. In
the developer networks, nodes correspond to developers. If
two developers have participated in a same project, the two
developers (nodes) are linked each other by an edge. In
a similar fashion, a project node in the project networks is
linked to another project node if a same developer has joined
the two projects. The developer-project networks is a rep-
resentation combined the two networks of developers and
projects (figure 1). All the three networks are represented
as undirected networks.

Most of studies on social network analysis often define de-
gree, weight and distance of nodes to characterize the topol-
ogy of networks [6, 7]. In our approach, however, the results
of the similarity calculations of Graphmania using collabo-
rative filtering are used to determine whether a node should
be linked to another node or not.

3.3 Collaborative Filtering
Graphmania is a tool for calculating similarities among

nodes and visualizing the results as social network graphs,
incorporating NAIST Collaborative Filtering Engines (NCFE)4

4Graphmania and NAIST Collaborative Filtering Engines

(see detailed algorithms in [10, 11]).
The similarities among developers are calculated using the

frequencies of participations in same projects. If developer i
and developer j join same projects many times, the similarity
among the two developers is rated highly. In the same way,
the similarities among projects are calculated using the fre-
quencies of co-existence of same developers in each project.
If there are many developers who are working together for
both project m and project n, the similarity among the two
projects is rated highly.

In general, recommender systems such as Amazon.com
use similarities for predicting and recommending customers’
preferred books as “Customers who bought this book also
bought...” Graphmania does not recommend anything cur-
rently but defines the relationship among developers and
projects using calculated similarities as threshold values.
Graphmania dose not visualize relations among developers
and projects with low similarities in order to avoid the com-
plexity of visualized results.

3.4 Visualizations
Graphmania shows an undirected network graph based

on the calculated similarities among F/OSS developers and
projects. For developer-project networks (figure 1), the graph

(NCFE) available from http://sourceforge.jp/projects/ncfe

113

Figure 2: Developer networks (The two developers
play a role of a linchpin between two social net-
works)

consists of two different types of nodes and three differ-
ent types of edges. A dotted edge connects two developers
who are working together for same projects. A dash-dotted
edge connects two projects that have same developers. Each
black line edge represents the relationship among projects
and developers (i.e. who is working for which projects and
which projects have whom).

Graphmania uses HyperGraph5 to provide users with hy-
perbolic views for visualizations and with interactivity to
visualized results. Hyperbolic visualizations help users un-
derstand information in detail while keeping an overview of
information (such the technique is called “focus + context”).
Since each node can have an URL to a website as a function
of HyperGraph, users are able to access to the site (devel-
opers’ information pages or projects’ HP) as soon as users
can find an interesting node.

4. A CASE STUDY
This section describes a case study of applying Graphma-

nia to F/OSS projects data collected from SourceForge and
how effective it can be used. As a condition of the similarity
calculation, we selected nodes with maximum 5 edges. This
means we used only a few percent of over 90,000 projects
data for reducing the amount of the similarity calculation.

Developer networks:
Figure 2 represents a part of developers networks snipped.
If you have maximum 5 edges, you can find the strength
of each edge comparing with similarities because it implies
shared history of participating in same projects. Even if

5http://hypergraph.sourceforge.net/

you have only a few edges, it would be also helpful to notice
important developers who play a role of a linchpin in the
cluster because you have possibilities to contact others via
the linchpin. For contacting others, just click the node you
are interested in and then you will be able to reach a devel-
opers’ information page. Developer networks are basically
same ones as social networks in common online communi-
ties.

Project networks:
Figure 3 represents a part of project networks snipped. You
can notice that similar name projects organize one cluster
because this indicates that projects that share specific pur-
poses or goals tend to have similar names (e.g. a project
related to TurboPower have “tp” at the head of a project
name). If you are a member of a project in such the cluster,
you might find interesting projects related to software you
create and might be able to obtain the useful information for
your software development from the members of the project.
Project networks are a good example of taking advantage of
collaborative filtering by a common practice in which similar
projects have similar project names.

Developer–project networks:
Using developer–project networks (figure 1), you can easily
notice your neighborhoods who are joining similar projects
with the red nodes and edges. You are easy to ask some-
thing to these neighborhoods because they are likely ac-
quaintances and seem to have similar interests of F/OSS
technologies. You can also recognize the projects’ neighbor-
hoods spend much effort from number of developers. These
projects might have ideas, technologies and solutions for
problems, which you need. Developer–project networks are
a bit complex but useful for finding developers and projects
related to your own.

5. CONCLUSION AND FUTURE WORK
In this paper, we described the issues on motivating F/OSS

(online) projects and needs for supporting knowledge col-
laboration across projects. We introduced Graphmania, a
tool for visualizing the relationship among developers and
projects using the techniques of collaborative filtering and
social networks.

In the near future, we have a plan to use other attributes
of the collected data listed in Table 3 and Table 4 for more
effective visualizations based on NCFE. We would also like
to extend the tool according to the Dynamic Collaboration
(DynC) framework [13] because the current tool cannot help
user control the amount of communication so that “rich”
developers or projects can prevent taking a lot of questions
and requests from “poor” developers or projects. Then we
would like to evaluate the tool through actual uses of F/OSS
developers.

6. ACKNOWLEDGMENTS
This work is supported by the EASE (Empirical Approach

to Software Engineering) project6 and supported by Grant
15103 of the Open Competition for the Development of In-
novative Technology program, the Comprehensive Develop-
ment of e-Society Foundation Software program of the Min-
istry of Education, Culture, Sports, Science and Technology
of Japan.

6http://www.empirical.jp/

114

Figure 3: Project networks (The large cluster in center consists of projects related to TurboPower. The
isolated small cluster on the upper left consists of projects related to Linux.)

7. REFERENCES
[1] G. Beenen, K. Ling, X. Wang, K. Chang,

D. Frankowski, P. Resnick, and R. E. Kraut. Using
social psychology to motivate contributions to online
communities. In Proc. of the 2004 ACM conf. on
Computer Supported Cooperative Work (CSCW’04),
pages 212–221, 2004.

[2] J. Feller and B. Fitzgerald. Understanding Open
Source Software Development. Addison-Wesley, 2002.

[3] D. German and A. Mockus. Automating the
measurement of open source projects. In Proc. of the
3rd Workshop on Open Source Software Engineering,
pages 63–67, 2003.

[4] A. E. Hassan, R. C. Holt, and A. Mockus, editors.
Proc. of 1st Intl. Workshop on Mining Software
Repositories (MSR2004), 2004.

[5] K. R. Lakhani and E. von Hippel. How open source
software works: “free” user-to-user assistance.
Research Policy, 32(6):923–943, 2003.

[6] L. Lopez-Fernande, G. Robles, and J. M.
Gonzalez-Barahona. Applying social network analysis
to the information in CVS repositories. In Proc. of 1st
Intl. Workshop on Mining Software Repositories
(MSR2004), pages 101–105, 2004.

[7] G. Madey, V. Freeh, and R. Tynan. The open source
software development phenomenon: An analysis based
on social network theory. In Americas conf. on
Information Systems (AMCIS2002), pages 1806–1813,
2002.

[8] A. Mockus, R. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache
and mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM),
11(3):309–346, 2002.

[9] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto,
K. Inoue, and K. Torii. Empirical project monitor: A
tool for mining multiple project data. In Proc. of 1st
Intl. Workshop on Mining Software Repositories
(MSR2004), pages 42–46, 2004.

[10] N. Ohsugi. A Framework for Software Function
Recommendation Based on Collaborative Filtering.
NAIST–IS–DT0361006, Graduate School of
Information Science, Nara Institute of Science and
Technology, 2004.

[11] N. Ohsugi, A. Monden, and K. Matsumoto. A
recommendation system for software function
discovery. In Proc. of 9th Asia-Pacific Software
Engineering conf. (APSEC’02), pages 248–257, 2002.

[12] Y. Ye and K. Kishida. Toward an understanding of
the motivation open source software developers. In
Proc. of the 25th Intl. conf. on Software Engineering
(ICSE’03), pages 419–429, 2003.

[13] Y. Ye, Y. Yamamoto, and K. Kishida. Dynamic
community: A new conceptual framework for
supporting knowledge collaboration in software
development. In Proc. of 11th Asia-Pacific Software
Engineering conf. (APSEC’04), pages 472–481, 2004.

115

Collaboration Using OSSmole:
a repository of FLOSS data and analyses

Megan Conklin
Elon University

Department of Computing Sciences
Elon, NC 27244
1(336)229-4362

mconklin@elon.edu

James Howison
Syracuse University

School of Information Studies
Syracuse, NY 13210

1(315)395-4056

jhowison@syr.edu

Kevin Crowston
Syracuse University

School of Information Studies
Syracuse, NY 13210

1(315)380-3923

crowston@syr.edu
ABSTRACT
This paper introduces a collaborative project OSSmole which
collects, shares, and stores comparable data and analyses of free,
libre and open source software (FLOSS) development for
research purposes. The project is a clearinghouse for data from
the ongoing collection and analysis efforts of many disparate
research groups. A collaborative data repository reduces
duplication and promote compatibility both across sources of
FLOSS data and across research groups and analyses. The
primary objective of OSSmole is to mine FLOSS source code
repositories and provide the resulting data and summary analyses
as open source products. However, the OSSmole data model
additionally supports donated raw and summary data from a
variety of open source researchers and other software
repositories. The paper first outlines current difficulties with the
typical quantitative FLOSS research process and uses these to
develop requirements for such a collaborative data repository.
Finally, the design of the OSSmole system is presented, as well
as examples of current research and analyses using OSSmole.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures,
process metrics, product metrics.

General Terms
Measurement, Human Factors.

Keywords
Open source software, free software, libre software, data mining,
data analysis, data repository, source control, defect tracking,
project metrics.

1. INTRODUCTION
OSSmole is a collaborative project designed to gather, share and
store comparable data and analyses of free and open source
software development for academic research. The project draws
on the ongoing collection and analysis efforts of many research
groups, reducing duplication, and promoting compatibility both
across sources of online FLOSS data and across research groups
and analyses.

Creating a collaborative repository for FLOSS data is important
because research should be as reproducible, extensible, and
comparable as possible. Research with these characteristics
creates the opportunity to employ meta-analyses ("analyses of
analyses") which exploit the diversity of existing research by
comparing and contrasting existing results to expand knowledge.
Unfortunately, the typical FLOSS research project usually
proceeds in a way that does not necessarily achieve these goals.
Reproducing, extending, and comparing research project results
requires detailed communal knowledge of the many choices
made throughout a given research project. Traditional publication
methods prioritize results but mask or discard much of the
information needed to understand and exploit the differences in
the data collection and analysis methodologies of different
research groups. OSSmole is designed to provide resources and
support to academics seeking to prepare the next generation of
FLOSS research.

2. BACKGROUND AND METHOD
Obtaining data on FLOSS projects is both easy and difficult. It is
easy because FLOSS development utilizes computer-mediated
communications heavily for both development team interactions
and for storing artifacts such as code and documentation. As
many authors have pointed out, this process leaves a freely
available and, in theory at least, highly accessible trail of data
upon which many academics have built interesting analyses. Yet,
despite this presumed plethora of data, researchers often face
significant practical challenges in using this data in a deliberative
research discourse.

2.1. Data Selection
The first step in collecting online FLOSS data is selecting which
projects and which attributes to study. Two techniques often used
in estimation and selection are census and sampling. (Case
studies are also used but these will not be discussed in this
paper.)

Conducting a census means to examine all cases of a phenomena,
taking the measures of interest to build up an entire accurate
picture. Taking a census is difficult in FLOSS for a number of
reasons. First, it is hard to know how many FLOSS projects there
are ‘out there’ and hard to know which projects are actually in or
out. For example, are corporate-sponsored projects part of the
phenomenon or not? Do single person projects count? What
about school projects?

Second, projects, and the records they leave, are scattered across
a surprisingly large number of locations. It is true that many are
located in the major general repositories, such as Sourceforge and
GNU Savannah. It is also true, however, that there are a quickly
growing number of other repositories of varying sizes and
focuses (e.g. CodeHaus, GridForge, CPAN (the perl

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’05, May 17, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-123-6/05/0005…$5.00.

116

repository) ...) and that many projects, including the well-known
and well-studied Apache and Linux projects, prefer to "roll their
own" tools. This locational diversity obscures many FLOSS
projects from attempts at census. Even if a full listing of projects
and their locations could be collated, there is also the practical
difficulty of dealing with the huge amount of data—sometimes
years and years of email conversations, source control data, and
defect tracking data—required to conduct comprehensive
analyses.

These difficulties suggest sampling, or the random selection of a
small, and thus manageable, sub-group of projects which is then
analyzed to represent the whole. While sampling could solve the
manageability problem presented in census-taking, there is still
another difficulty with both processes: the total population from
which to take the sample selection is not well-defined. Perhaps
more importantly, sampling open source projects is
methodologically difficult because everything FLOSS research
has shown so far points to massively skewed distributions across
almost all points of research interest [1] [8]. Selecting at random
from these highly skewed datasets will yield samples which will
be heavily weighted to single-developer projects, or projects
which are still in listings but which are stillborn, dormant, or
dead. These are often not the most interesting research subjects.

The large skew also makes reporting distributions of results at
best difficult and at worst misleading because averages and
medians are not descriptive of the distribution. The difficulty of
sampling is demonstrated in the tendency of FLOSS studies to
firstly limit their inquiries to projects using one repository
(usually Sourceforge), and often to draw on samples created for
entirely different purposes (such as top-100 lists as in [6]),
neither of which is a satisfactory general technique.

2.2. Data Collection
Once the projects of interest have been located, the actual project
data must be collected. There are two techniques that prevail in
the FLOSS literature for collecting data: web spidering and
obtaining database dumps.

Spidering data is fraught with practical complexities [5]. Because
the FLOSS repositories are usually maintained using a database
back-end and a web front-end, the data model appears
straightforward to reproduce. The central limitation of spidering,
however, is that the researcher is continually in a state of
discovery. The data model is always open to being changed by
whoever is controlling the repository and there is usually no way
that the researcher will know of changes in advance. Spidering is
a time- and resource-consuming process, and one that is being
unnecessarily replicated throughout the world of FLOSS
research.

Getting direct access to the database is clearly preferable, but not
all repositories make their dumps available. And understandably
so: it is not a costless process to make data-dumps available.
Dumps can contain personally identifiable and/or financial
information (as with the Sourceforge linked donation system)
and so must be anonymized or otherwise treated. Repositories are
facing an increasing number of requests for database snapshots
from academics and are either seeking a scalable way to do
releases or declining to release the data1. It is often unclear

1 It is understood that an NSF funded project on which the Sourceforge
project manager is a co-PI is planning to make Sourceforge dumps generally
available, but the details of this project are, at the time of writing, not available.
See http://www.nd.edu/~oss/People/people.html

whether database dumps obtained by one research project can be
shared with other academics, so rather than possibly breach
confidentiality or annoy their subjects by asking for signed
releases, it is understandable that academics who do get a
database dump do not make those dumps easily available.

Even when a dump is made available, it is necessary to interpret
the database schema and identify missing data elements. This is
not always as straightforward as one would expect. After all, the
databases were designed to be used to build Web pages quickly,
not to conduct academic analyses. Furthermore, they have been
built over time and face the complexity that any schema faces
when stretched and scaled beyond its original intended use:
labels are obscured, extra tables are used, there are
inconsistencies between old and recently-added data. The
interpretation and transformation of this data into information
that is interesting to researchers is not a trivial process, and there
is no reason to think that researchers will make these
transformations in a consistent fashion. It is also possible that
some repositories do not themselves store the type of historical
information about projects that would be interesting for academic
research. For example, while a snapshot of a repository might
show the current list of developers each project, it could be
missing important historical information about which developers
have worked on which projects in the past.

Even pristine and well-labeled data from repositories is not
sufficient because different repositories store different data
elements. Different forges can have projects with the same
names; different developers can have the same name across
multiple forges; the same developer can go by multiple names in
multiple forges. In addition, forges have different terminology for
things like developer roles, project topics, and even programming
languages. The differences are compounded by fields which are
named the same but which represent different data. This is
especially true of calculated fields, such as activity or downloads,
for which there is incomplete publicly-available information how
these fields are calculated.

2.3. Data Validation
Once projects have been selected and the available data
harvested, researchers must be confident that the data adequately
represents the activities of a project. For example, projects may
use the given repository tools to differing degrees: many projects
are listed on Sourceforge, and use the mailing lists and web
hosting provided there. But some of these same projects will
shun the notoriously quirky Tracker bug-tracking system at
Sourceforge, preferring to set up their own systems. Other
projects host their activities outside Sourceforge but maintain a
‘placeholder’ registration there. These projects will often have
very out-of-date registration information, followed by a link to an
external Web site. It is very difficult, without doing detailed
manual examination of each project, to know exactly how each
project is using its repository tools. It is thus difficult to be
confident that the data collected is a reasonable depiction of the
project’s activities.

Complete accuracy is, of course, not always required because in
large scale data analysis some 'dirty' data is acceptably handled
through statistical techniques. At a minimum, though, researchers
contemplating the accuracy of their data must have some reason
to believe that there are no systematic reasons that the data
collected in the name of the group would be unrepresentative.
Unfortunately, given the idiosyncrasies of FLOSS projects,
confidence on this point appears to require project-by-project

117

verification, a time-consuming process for individual researchers
and projects, and one which is presumably repeated by every
researcher going through this information-gathering exercise.

The upshot of this issue is that each step of the typical FLOSS
research process introduces variability into the data. This
variability then underlies any quantitative analysis of FLOSS
development. Decisions about project selection, collection, and
cleaning are compounded throughout the cycle of research.
FLOSS researchers have not, so far, investigated the extent to
which this variability affects their findings and conclusions. The
demands of traditional publication also mean that the decisions
are not usually fully and reproducibly reported.

Our critique is not against the existence of differences in research
methods or even datasets. There is, rightly, more than one way to
conduct research, and indeed it is this richness that is at the heart
of knowledge discovery. Rather, our critique is that the research
community is currently unable to begin a meta-analysis phase
because the current process of FLOSS research is hampered by
variability, inconsistency, and redundant, wasted effort in data
collection and analysis. It is time to learn from the free and open
source approaches we are studying and develop an open,
collaborative solution.

3. PROPOSED SOLUTION
3.1. Goals of OSSmole
The above problem description allows us to identify
requirements for building a system to support research into
FLOSS projects. We call the system we have built OSSmole. The
OSSmole system is a central repository of data and analyses
about FLOSS projects which have been collected and prepared in
a decentralized, collaborative manner. Data repositories have
been useful in other fields, forming datasets and interchange
formats (cf ARFF) around which research communities focus
their efforts. For example, the TREC datasets have supported a
community of information retrieval specialists facilitating
performance and accuracy comparisons2. The GenBank is the
NIH database of all publicly-available gene sequences.3 The
PROMISE software engineering repository is a collection of data
for building predictive models of the software engineering
process.4 The goal of the OSSmole project is to provide a high-
quality, widely-used database of FLOSS project information, and
to share standard analyses for replication and extension of this
data.

A data and analysis clearinghouse for FLOSS data should be:

Collaborative—The system should leverage the collective effort
of FLOSS researchers. It should reduce redundancies in data
collection and free a researcher’s time to pursue novel analyses.
Thus, in a manner akin to the BSD rather than the GPL licensing
model, OSSmole expects but does not require that those that use
data contribute additional data and the analysis scripts that they
obtain or use.

Available—The system should make the data and analysis scripts
available without complicated usage agreements, where possible
through direct unmonitored download or database queries. This
ease the startup requirements for new researchers who wish to
implement novel techniques but face high data collection costs.

2 http://trec.nist.gov
3 http://www.ncbi.nlm.nih.gov/GenBank
4 http://promise.site.uottawa.ca/SERepository

This will also lower the barriers to collegial replication and
critique.

Comprehensive and compatible—Given the multiplicity of
FLOSS project forges identified above, the system should cover
more than just one repository. The system should also be able to
pull historical snapshots for purposes of replication or extension
of earlier analyses. Compatibility requires that the system should
translate across repositories, allowing researchers to conduct both
comprehensive and comparative analyses. There is also the
potential to develop a data interchange format for FLOSS project
collateral. FLOSS project leaders, fearing data and tool lock-in,
might find this format useful as they experiment with new tools
or and repositories.

Designed for academic research—The data model and access
control features should be designed for convenience for academic
researchers. This means a logical and systematic data model
which is properly documented with well-labeled fields. The
source of each data element should be known and transparent.
Researchers should be able to trace the source of each data
element so that they can make decisions about whether to include
a particular record or attribute in their analyses.

Of high quality—Researchers should be confident that the data in
the system is of high quality. The origins and collection
techniques for individual data elements must be traceable so that
errors can be identified and not repeated. Data validation
performed routinely by researchers can also be shared (for
example, scripts that sanity-check fields or distributions) and
analyses can be validated against earlier ones. This is a large
advantage over individual research projects which may be
working with single, non-validated datasets. It reflects the
“many-eyes” approach to quality assurance, familiar from
FLOSS development practices.

Support reproducible and comparable analyses—The system
should specify a standard application programming interface
(API) for inserting and accessing data via programmed scripts.
That allows analyses to specify, using the API, exactly the data
used. It is also desirable that data extracted from the database for
transformation be exported with verbose comments detailing its
origin and how to repeat the extraction. The best way to ensure
reproducible and comparable analyses is to have as much of the
process as possible be script-driven. Ideally, these scripts could
available for analysis by the research community.

A system that meets these requirements, we believe, will promote
the discovery of knowledge about FLOSS development by
facilitating the next phase of extension through replication,
apposite critique, and well-grounded comparisons.

3.2. OSSmole Data Model
The OSSmole data model is designed to support data collection,
storage and analysis from multiple open source forges in a way
that meets the above requirements. OSSmole is able to take both
spidered data and data inserted from a direct database dump. The
raw data is timestamped and stored in the database, without
overwriting any data previously collected about the same project.
Finally, periodic raw and summary reports are generated and
made publicly-available on the project web site.

The type of data that is currently collected from the various open
source forges includes: the full HTML source of the forge data
page for the project, project name, programming language(s),
natural language(s), platform(s), open source license type,

118

operating system(s), intended audience(s), and the main project
topic(s). Developer-oriented information includes: number of
developers, developer information (name, username, email), and
the developer's role on the project. We have also collected issue-
tracking data (mainly bugs) such as date opened, status, date
closed, priority and so on. Data has been collected from
Sourceforge, GNU Savannah, the Apache foundation’s Bugzilla
and Freshmeat. We are currently creating mappings between
fields from each of these repositories and assessing how
comparable the fields are. The forge-mapping task is extensive
and time-consuming, but the goal is to build a dataset that is
more complete and is not specific to only one particular forge.

Because OSSmole is constantly growing and changing as new
forges are added, and because data from multiple collectors is
both expected and encouraged, it is important that the database
also store information about where each data record originally
came from (i.e. script name, version, command-line options used,
name and contact information of person donating the data, and
date of collection and donation). This process ensures
accountability for problematic data, yet encourages collaboration
between data collectors. The information is stored inside the
database to ensure that it does not get decoupled from the data.
Donated raw data files are also stored in their original formats, in
case of problems with the database imports or unforseen mapping
problems between projects.

Likewise, it is a general rule that data is not overwritten when
project details change; rather, one of the goals of the OSSmole
project is that a full historical record of the project be kept in the
database. This will enable researchers to analyze project and
developer changes over time and enable access to data that is
difficult or impossible to access once it has slipped from the
repositories front ends.

Access to the OSSmole project is two-pronged: both data and
scripts are continually made available to the public under an open
source license. Anyone can download the OSSmole raw and
summary data for use in their own research projects or just to get
information about "the state of the industry" in open source
development. The raw data is provided as multiple text files;
these files are simply tab-delimited data dumps from the
OSSmole database. Summary files are compiled periodically, and
show basic statistics. Examples of summary statistics that are
commonly published would be: the count of projects using a
particular open source license type, or the count of new projects
in a particular forge by month and year, or the number of projects
that are written using each programming language. It is our hope
that more sophisticated analyses will be contributed by
researchers and that the system will provide dynamic and up-to-
date results rather than the static "snapshots" that traditional
publication unfortunately leaves us.

The scripts that populate the OSSmole database are also available
for download under an open source license. These scripts are
given for two reasons: first, so that interested researchers can
duplicate and validate our findings, and second, so that anyone
can expand on our work, for example by modifying a script to
collect data from a new forge. Indeed this process has begun with
the recent publication of a working paper comparing and
critiquing our spidering and summaries and beginning
collaboration [7]. OSSmole expects and encourages contributions
of additional forge data. (Each set of donated data is given a
unique number so that the different "data sources" can be
included or excluded for a given analysis. This allows us to

accept donated data, along with a description of where the data
came from. This transparency gives researchers the ability to
include or exclude the donation from their analyses.) Researchers
interested in donating or using OSSmole data should see the
OSSmole project page at http://ossmole.sf.net and join the
mailing list for information on how to contribute.

4. RESULTS
Because it is a regularly-updated, publicly-available data
repository, OSSmole data has been used both for constructing
basic summary reports about the state of open source, as well as
for more complex social network analyses of open source
development teams. For example, summary reports posted as part
of the OSSmole project regularly report the number of open
source projects, the number of projects per programming
language, the number of developers per project, etc. This sort of
descriptive data is useful for constructing "state of the industry"
reports, or for compiling general statistical information about
open source projects. The OSSmole collection methods are
transparent and able to be reproduced, so OSSmole can serve as a
reliable resource for these metrics. Having a stable and
consistently-updated source of this information will also allow
metrics to be compared over time. One of the problems with
existing analyses of open source project data is that researchers
will run a collection and analyze it once, publish the findings,
and then never run the analysis again. The OSSmole data model
and collection methodology was designed to support historical
comparisons of this kind.

OSSmole data was used in a number of large-scale social
network analyses of FLOSS project development. Crowston and
Howison [3] reports the results of a SNA centralization analysis
in which the data suggests that, contrary to the rhetoric of FLOSS
practicioner-advocates, there is no reason to assume that FLOSS
projects share social structures. Further OSSmole data was used
in the preparation of [2] which, in an effort to avoid the
ambiguities of relying on ratings or downloads, develops a range
of quantitative measures of FLOSS project success including the
half-life of bugs. OSSmole makes available the full data and
analysis scripts which make these analyses fully reproducible
and, we hope, extendable.

Another project using OSSmole data [1] explored whether open
source development teams have characteristics typical of a self-
organized, complex network. This research investigated whether
FLOSS development networks will evolve according to "rich get
richer" or "winner take all" models, like other self-organized
complex networks do. Are new links (developers) in this network
attracted to the largest, oldest, or fittest existing nodes (project
teams)? The OSSmole data was used to determine that there are
indeed many characteristics of a complex network present in
FLOSS software development, but that there may also be a
mutual selection process between developers and teams that
actually stops FLOSS projects from matching the "winner take
all" model seen in many other complex networks.

Recently, another researcher, Dawid Weiss, collected data by
spidering Sourceforge [7]. Weiss then compared the data and
collection methodology to the OSSmole data collection
techniques and results. He chose to focus mostly on the changes
between when his results were gathered, and when the first
OSSmole results were gathered a few months prior. There are
two main differences noted in this technical report. First, he
discovered that the Sourceforge management team made changes
to the data in between the two gathering processes (specifically,

119

they relabeled all the target operating systems and recategorized
them). Second, there are differences in how data is gathered and
cleaned between research projects (specifically, the OSSmole
team cleaned out any inaccessible project for which we could
gather no information other than a name, but he did not do this
cleaning). These two observations about the data collection and
analysis effort are precisely why OSSmole desires to be a
collaborative, "many eyes" approach.

The most interesting thing about the intersection of the Weiss
research with OSSmole is that he found the OSSmole dataset
without our assistance, conducted numerous analyses, then
contacted our team to share his results. This experience illustrates
the convenience and necessity of having a publicly-available
dataset of this information. Because OSSmole is designed with
collaboration in mind, these sorts of comparative results can be
easily integrated into the OSSmole database, and then used in
tandem with native OSSmole data or alone. As such, we have
now fully integrated the Weiss data into the OSSmole database.

5. LIMITATIONS AND FUTURE WORK
There are, of course, limitations in the OSSmole project and our
approach. Firstly, it is limited to data available online as a result
of documented project activities. Certainly, these are not the only
interactions FLOSS team members have. Thus while textual data
like mailing lists, source control system history and comments,
forums, and IRC chat logs could be included, OSSMole does not
capture unlogged instant messaging or IRC, voice-over-IP or
face-to-face interactions of FLOSS developers. Nor do we intend
to store interviews or transcripts conducted by researchers which
would be restricted by policies governing research on human
subjects. We are also following the discussion about the ethical
concerns of using data about open source projects closely [4].

There are also dangers in this approach which should be
acknowledged. The standardization implied in this kind of
repository, while desirable in many ways, runs the risk of
reducing the valuable diversity that has characterized academic
FLOSS research. We hope to provide a solid and traceable
dataset and basic analyses which will support, not inhibit,
interpretative and theoretical diversity. This diversity also means
that research is not rendered directly comparable simply because
analyses are based on OSSMole data or scripts. We are hopeful
that OSSMole, by acting as a scaffold, will give researchers more
time for such interesting work.

We will not be surprised to find parallel proposals or projects
being prepared or implemented by others in the academic
research community, although we are not aware of any detailed
proposals or existing code at the time of writing.

It is quite likely that a functional hierarchy could develop
between cooperating projects, something akin to the relationship
between FLOSS authors and distributions, such as Debian or Red
Hat and their package management systems (apt and rpm). For
example, such an arrangement would allow groups to specialize
in collecting and cleaning particular sources of data and others to
concentrate on their compatibility. Certainly the existing
communities of academics interested in FLOSS, such as
http://opensource.mit.edu, are encouraged to be a source of data
and support. Similarly, we would like to extend to people who
donate data the ability to specify a license for that data.

One of the practical problems with spidering projects, like
OSSmole, is keeping abreast of changes to the web site (or data
source) being spidered. This is a known challenge with any
spidering project, and was one of the main motivators for starting
this project in the first place: if one research team can worry
about spidering, saving, and aggregating the data, then that frees
other teams to do other interesting analyses with the data, or to
collect new data.

6. CONCLUSION
Researchers study FLOSS projects in order to better understand
collaborative human behavior during the process of building
software. Yet it is not clear that current researchers have many
common frames of reference when they write and speak about
the open source phenomenon. As we study open software
development we learn the value of openness and accessibility of
code and communications; OSSmole is a step towards applying
that to academic research on FLOSS. It is our hope that by
providing a repository of traceable and comparable data and
analyses on FLOSS projects, OSSmole begins to address these
difficulties and supports the development of a productive
ecosystem of FLOSS research.

7. ACKNOWLEDGMENTS
Our thanks to the members of the ossmole-discuss mailing list,
especially Gregorio Robles, Dawid Weiss, and Niti Jain.

8. REFERENCES
[1] Conklin, M. Do the rich get richer? The impact of power

laws on open source development projects. Open Source
Convention. (OSCON '04) (Portland, Oregon, USA, July 25-
30, 2004). At http://www.elon.edu/facstaff/mconklin/pubs/
oscon_revised.pdf.

[2] Crowston, K., Annabi, H., Howison, J., and Masano, C.
Towards a portfolio of FLOSS project success metrics. In
Proceedings of the Open Source Workshop of the
International Conference on Software Engineering (ICSE
'04).

[3] Crowston, K. and Howison, J. The social structure of free
and open source software development. First Monday 10, 2
(February, 2005).

[4] El-Emam, K. Ethics and Open Source. In Empirical
Software Engineering 6, 4 (Dec. 2001), 291-292.

[5] Howison, J. and Crowston, K. The perils and pitfalls of
mining Sourceforge. In Proceedings of the Workshop on
Mining Software Repositories at the International
Conference on Software Engineering (ICSE '04).

[6] Krishnamurthy, S. Cave or community? An empirical
examination of 100 mature open source projects. First
Monday 7, 6 (June, 2004).

[7] Weiss, D. A large crawl and quantitative analysis of open
source projects hosted on sourceforge. Research Report ra-
001/05, Institute of Computing Science, Pozna University of
Technology, Poland, 2005. At http://www.cs.put.poznan.pl/
dweiss/xml/publications/index.xml

[8] Xu, J, Gao, Y., Christley, S. and Madey, G. A topological
analysis of the open source software development
community. In Proceedings of 38th Hawaii International
Conference on System Sciences (HICSS 05) (Hawaii, USA,
January 4-7, 2005).

120

