
Repository Mining and Six Sigma for Process
Improvement

Michael VanHilst
Dept. of Computer Science & Eng.

Florida Atlantic University
Boca Raton, Florida

1 954 661-1473

vanhilst@fau.edu

Pankaj K. Garg
Zee Source

1684 Nightingale Avenue, Suite 201
 Sunnyvale, California

1 408 373-4027

garg@zeesource.net

Christopher Lo
Dept. of Computer Science & Eng.

Florida Atlantic University
Boca Raton, Florida

1 561 346-4749

chrishlo@yahoo.com

ABSTRACT
In this paper, we propose to apply artifact mining in a global
development environment to support measurement based process
management and improvement, such as SEI/CMMI’s GQ(I)M and
Six Sigma’s DMAIC. CMM has its origins in managing large
software projects for the government and emphasizes achieving
expected outcomes. In GQM, organizational goals are identified,
appropriate questions with corresponding measurements are then
defined and collected. Six Sigma has its origins in manufacturing
and emphasizes reducing cost and defects. In DMAIC, a major
component of a Six Sigma approach, sources of waste are
identified. Then changes are made in the process to reduce effort
and increase the quality of the product produced. GQM and Six
Sigma are complementary. Both approaches rely heavily on the
measurement of input and output metrics. Mining development
artifacts can provide usable metrics for the application of DMAIC
and GQM in the software domain.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
software process models.

General Terms
Management, Measurement, Reliability, Theory.

Keywords
Six Sigma, GQM, Process Improvement, Repositories

1.INTRODUCTION
Six Sigma and CMMI are two different approaches to process
improvement that come from different perspectives. The two
approaches are complementary. Combining the strengths of each
approach yields an approach that focuses strongly on continuous
and incremental process improvement while seeking metrics that
are appropriate to the reality of software development. Within
this perspective, we propose that mining artifacts found in large
software repositories can provide useful metrics to support a
program of continuous process improvement. Mining artifact
repositories provides useful process metrics without adding
overhead to the process being observed. Instrumenting artifacts,

rather than people, supports other kinds of process improvement.
While we have not yet put our ideas into practice, in this paper we
explain our reasoning and place the proposal in the context of
recent and historical trends in software and management theory.
In future papers we will describe the experience of putting these
ideas to use in a large software organization.

2.GQM, DMAIC, and Repository Mining
GQM GQM is a disciplined approach to defining and collecting
metrics as part of a software development process improvement
program. Originally developed by Basili’s group in University of
Maryland, it has since been adopted, slightly modified to GQ(I)M,
as part of the guidelines for the SEI’s CMMI. GQ(I)M stands for
Goal-Question-(Indicator)-Measure. The 10 steps in a GQM
process identify business goals, identify the questions to ask
related to these goals and measurements that will help answer
them, and create a plan to collect the measurements. The CMMI
and GQM focus on measuring and managing the development
process to predictably and reliably achieve organizational goals.
Six Sigma is a disciplined approach to continuous process
improvement designed to increase customer satisfaction and
profits while reducing defects and cost. The name derives from
the ideal of 3.4 defects per million opportunities. Organizations
with a three sigma level of defects (typical of software) are
candidates for improvement. Beyond, six sigma, the investment is
assumed not to be cost effective. Originally developed at
Motorola, it has been popularized by many high profile
companies including Honeywell, GE, 3M, Kodak, DuPont, and
Allied Signal. Today it is widely applied to manufacturing and
service-related processes. A good description of Six Sigma can
be found on the SEI web site [21].
The origins of Six Sigma are instructive for software
development. In 1985, Bill Smith argued that if a product was
found defective and corrected during the production process,
other defects were bound to be missed and found later by the
customer during use of the product. This raised the question, was
the effort to achieve quality really dependent on detecting and
fixing defects, or could quality be achieved by preventing defects
in the first place through manufacturing controls and product
design? Smith’s observation echoes the third of Deming’s 14
points, not to rely on inspection and testing to achieve quality [3].
Six Sigma is an iterative approach based on undertaking a
continuous series of initiatives to improve performance over time.
The process improvement model is called DMAIC, an acronym
for the following 5 steps.

1) Define what is important. What matters to the customer?
2) Measure performance. How are we doing? What

aspects of the process are affecting customer value?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

3) Analyze opportunity. What could we be doing better?
What are the variables that affect performance?

4) Improve the process. Plan a strategy for improvement
and test it out.

5) Control the process. Institutionalize practices to sustain
the improvement.

A key concept in Six Sigma is the “big Y”. What is the greatest
gain in measurable customer value (measured on the y-axis), that
can be achieved by an investment (measured on the x-axis) in
process improvement. At the beginning of each initiative iteration
the process is analyzed to find threats to customer satisfaction and
opportunities for improvement. Traditionally, the measurement
part of the process is based on practices of statistical quality
control.
A typical example of the application of Six Sigma might involve
light bulb manufacturing. The measure phase discovers that
recently the variance in the thickness of the glass has been
increasing. Continuation of this trend could lead to breakage in
shipping and higher costs. The source of the variance is identified
(worn machine part, new operator, supplier, etc.) and corrective
action is undertaken.
The strengths and weakness of GQM and DMAIC are
complementary [9]. Implementations of the CMM are sometimes
criticized for emphasizing repeatability over improving
productivity. Six Sigma is sometimes criticized for being
inappropriate for development processes characterized by the
unique intellectual efforts of knowledge workers. DMAIC’s
strength is its focus on continuous process improvement and its
iterative and incremental approach to achieving it. GQM’s
strength is in defining metrics that are appropriate to the business
goals and to the process. In this context, the kind of information
that can be found in software repositories adds value.
Mining software development repositories can be used to detect
weaknesses and identify opportunities to improve the
development process. Repository measurements can be collected
without adding significant process overhead. In the past, there has
been an impediment to using the kind of data that can be collected
and inferred from the mining of software repositories because of
its perceived lack of methodological and statistical rigor.
However, there is an emerging understanding within both the
GQM [16] and Six Sigma [15] communities that this kind of data
yields real value. “In rapidly changing environments, precise
numbers and elaborate statistical analyses are often less valuable
than simpler answers to insightful, well-directed questions” [15].
Moreover, recent theories in process management and process
improvement place greater value on the kinds of knowledge that
can be found by mining development repositories in the pursuit of
process improvement. Theories such as Obsolete Theory [13],
Lean Management [20], Theory of Constraints [7], and Agile
methods teach us to focus more on execution and less on
planning, reduce waste, look for bottlenecks, balance reliable
measures with measures that show value, and embrace change as a
strategic advantage.
The concept of waste in lean manufacturing is attributed to
Toyota’s Taichi Ohno and Shigeo Shingo [17]. Waste is defined
as any activity that consumes resources but delivers no value to
the customer. Defects are a source of waste – once allowed to
occur, they require rework at best, and at worst, lead to less useful
or returned products and unhappy customers. Delay is also a
source of waste, not only from increased development cost, but
also from opportunities missed in the marketplace and in

resources not available to produce more value. In Six Sigma,
Black Belt practitioners achieve their rating through training and
proven experience, where proven experience comes from
achieving measurable reductions in waste.

3.Software Development as Production
Software development in large organizations can often be viewed
as a production process. A typical team develops multiple
variations (possibly variations over time) of a core product. In
[23] software product line development is compared to
manufacturing cars, where the basic car can be varied in terms of
engine, seats, upholstery, etc. (In fact, part of Toyota’s Lean
Manufacturing is the SMED, Single Minute Exchange of Dies,
concept of process retargeting for major variations.) When
software development is viewed as production, features can be
viewed as inventory. In this light, the Extreme Programming
principle of “build the simplest thing” can be seen as a correlate
of Ohno’s concept of Kanban or Just-In-Time inventory. (Test-
first and pair programming correspond to Shingo’s Poka-Yoke or
mistake-proofing, and source inspection, respectively.)
When software development is viewed as a production process, a
valid question becomes, where are the bottlenecks? In software
product line development, bottlenecks can be caused by poor
architecture and code rot, problems with requirements, or linkages
and dependencies between project elements. Inspecting
development artifacts can be an effective aid to identify and
measure potential bottlenecks.
If a project’s change history shows a pattern of recent changes
affecting more than the usual number of sites, an architecture
problem might be indicated. Recent additions could be of a type
that the architecture does not well support. Decreasing
localization of change could also be a sign of code rot – repeated
change over time tends to make code progressively more brittle to
additional modification. In either case, the area of modification
could be a candidate for refactoring.
Analysis of the email or SMS archives could reveal a volume of
messages between developers and the internal customer prior to
progress being made on specific features or requests. This pattern
could indicate a problem with the process of requirements capture
or specification. Further analysis of the types of features involved
and the nature of the misunderstanding would be warranted.
Standard product line domain analysis practices, e.g. [12], are
facilitated by the analysis of artifacts. A pattern of a high
frequency of modification on the same pieces of code across
multiple variants could indicates an opportunity to save effort by
building a code generator to handle the differences [23]. Two
pieces of code that often change together might indicate high
affinity or coupling, while code artifacts that seldom changes
together exhibit the opposite. Code sections that rarely see change
are good candidates for inclusion in the core domain architecture.
Analyses of these types can help build effective architectures that
better support product line and model driven development.
Frequent use of manuals or searching the web may reveal an
opportunity for training on the issues in question. Similarly a
comparison of artifacts between two teams, where one team is
consistently more productive than the other, might reveal types of
training that would best aid the less-performing team.
Reducing defects can also be improved through inspection of
process artifacts. Correlating defect reports with prior activities
may indicate opportunities to reduce defects through process
change. By analyzing sequences of behavior, it might be possible

to identify where development shortcuts have been taken.
Leveson’s STAMP model for reliably safe systems assigns the
root cause of system failures to failures in constraints on the
process. Using this model, artifact evaluation could identify
patterns of violating the constraints before they lead to defects in
the product.
As software development organizations mature to CMMI levels 3,
4, and 5, their process artifacts contain more keys for correlation.
Change events refer to change requests, and communications
more often reference specific features, requests, and code. It is
likely that as organizations use and find value in artifact analysis,
properties of the artifacts that enhance their value for analysis will
improve. The process we propose corresponds the CMM level 5
Technology Change Management, but adds specific measurement
practices to drive the process.

4.MINING GLOBAL SOFTWARE
DEVELOPMENT ENVIRONMENTS
In the past, approaches such as DMAIC and GQM have advocated
putting measurement practices in place that collect measurements
to feed the overall method. We think that such instrumentation
approaches suffer from two main drawbacks: (1) they introduce
measurement overheads in the process that can slow the process,
and, more seriously, (2) they reify measurements and their
instrumentations, affecting the behavior of the process and its
participants. In contrast, we advocate that appropriate
measurements be mined from the existing process and product
data.
Fortunately, the existence of global software development
environments (GDE), like SourceForge [22], and Corporate
Source [4,5] and it’s successor SourceShare [24], provide ample
opportunities to collect appropriate data. A GDE provides a
repository for multiple projects in an organization to store all
project information in a single place [11]. Participants create a
new project in a GDE, and subsequently all project
communication (through email or discussion forums), version
control data, and problem report workflows are captured and
maintained in the GDE. We propose that GDEs can be extended
with an DMAIC dashboard to interactively provide required
metrics and analyses.
Since we do not have practical experience with this approach yet,
we give some hypothetical examples of analyses and
measurements that could be usefully mined from GDEs. One of
the main tenets of Six Sigma is to reduce the number of defects
per million opportunities in a product. In the case of software
development, the opportunities for introducing defects are
numerous, ranging from the abstract (error in understanding a
requirement) to concrete (error in a program statement).
Therefore, one category of charts that will be useful addition to
GDE would be running charts of open defects per opportunity,
e.g., open defects per thousand lines of source code. As the lines
of code progress over time, and the defects are opened and closed,
these charts can give a sense of how the process is maturing over
time.
In the spirit of Open Source, a GDE advocates that users (or
customers) of a software project have early and continuous
visibility of the process. Hence, potential users participate in the
email lists for discussions on feature requests and design changes.
These discussions can provide a useful measurement of how
involved are the users in the process? One can measure the
number of emails coming from users versus developers over time.

5.RELATED WORK
5.1Effort Estimation
Previous works on effort estimation have been focused on the
metrics from the development of an entire system. The AMEffMo
[10] project has shown that it is possible to estimate the amount of
effort that went into four separate projects using the metrics that
was gathered from each project. It should stand to reason that
effort estimations for individual components of a project are also
possible. In an evaluation study performed by Mockus and
Graves [2] they set forth an algorithm that is able to estimate
effort based on the size of a modification request as well as the
type of change requested. It was even stated that if the effort for
each change was known, then the size of the change would be
known. However, the reliability of developer recorded efforts per
module is questionable [8]. Therefore, effort was divided among
all the changes performed within a given period.
Four variables were found to be significant in affecting the effort
estimation model. The number of changes per modification
request, individual developer productivity, the nature of the
changes, and the time difference between the detection of decay
and the request for the change [19]. In addition to these four main
variables, other metrics can be used to measure effort such as the
requirements or specification documents. [14] These were the
major factors in this particular project and may be used as a
starting point for investigating the cause of bottlenecks in a
development process.

5.2Communication Gap
As email is a viable platform for communication among
developers of a system, these messages may become important
information in understanding the difficulties of developing certain
features or modules of a system. The storing of these email
messages into a database and later mining their contents has been
proven to be possible in the Apache Web server project. Since
these email messages follow a relatively structured format with
information regarding the sender, receiver, date, and subject, these
attributes have been shown they are able to be use as search
variables in database query. Furthermore, the dates of these
messages may be matched to the development timeframe of a
particular feature in order to analyze bottlenecks and causes of
increased effort during development. The number of developers
that participated in changes or development can also be found
through these techniques.
In addition to email messages are the pools of information located
in the change logs of a CVS repository. In a study of the CVS
repositories of an open source project, Mozilla and Bugzilla, [6]
the large scale and ongoing nature of the project did not affect the
mining. All that was needed was a time frame for which to
analyze the data. This time frame restriction might also help
narrow down changes performed at the same time as the
development period for a feature or module that is being analyzed.
Usually associated with each ChangeLog is a Bugzilla bug report
which is free formed text written by the developer. These might
also indicate where time was spent and what difficulties were
encountered.

6.CONCLUSION
Large repositories of software development artifacts contain a
potential wealth of information about the behavior and
performance of software development processes. This data is
available without adding overhead to the process in question.

Using this knowledge effectively requires an organizational
commitment to change, and a context for asking the right
questions. We believe that the combination of Six Sigma’s
DMAIC and CMMI’s GQ(I)M, provides such a framework. We
have explained the rationale and discussed recent trends in project
management theory that add support to our view. As we are only
now beginning to apply our ideas in an industrial setting, reports
on our experience are left to future publication.

7.REFERENCES
[1] Alonso, O., Gertz. M., and Devanbu, P. “Database

Techniques for the Analysis and Exploration of Software
Repositories” MSR '04: International Workshop on Mining
Software Repositiories, Edinburgh, UK, 2004.
http://www.cs.ucdavis.edu/~devanbu/msr04.pdf

[2] Atkins, D., Ball, T., Graves, T., and Mockus, A. “Using
Version Control Data to Evaluate the Impact of Software
Tools: A Case Study of the Version Editor.” IEEE
Transactions on Software Engineering, 28(7), July 2002,
625-637.
http://www.research.avayalabs.com/user/audris/papers/vedraf
t.pdf

[3] Deming, W.E., Out of the Crisis, MIT Press, Cambridge,
MA, 1986

[4] Dinkelacker, J., Garg, P.K., Miller, R., an d Nelson, D.
“Progressive Open Source.” In Proceedings of the
International Conference on Software Engineering
(ICSE'02). Orlando: ACM Press, 2002, 177-184.
http://lib.hpl.hp.com/techpubs/2001/HPL-2001-233.pdf

[5] Garg, P.K. and Dinkelacker, J. “Applying Open Source
Concepts Within A Corporation.” 1st ICSE International
Workshop on Open Source Software Engineering, Toronto,
Canada, May, 2001.
http://sunarcher.org/jamie/pubs/OpenSourceInCorpEnvs_20
01.pdf

[6] German, D.M. “Mining CVS Repositories: The SoftChange
Experience.” In 1st International Workshop on Mining
Software Repositories. May 2004, 17-21.
http://turingmachine.org/files/papers/2004/dmgmining2004.p
df

[7] Goldratt, E.M. The Goal: A Process of Ongoing
Improvement, 2nd rev. ed. North River Press, 1992.

[8] Graves, T.L. and Mockus, A., “Inferring Change Effort from
Configuration Management Data.” In Metrics 98: Fifth
International Symposium on Software Metrics, Bethesda,
Maryland, November 1998, 267-273.
http://www.research.avayalabs.com/user/audris/papers/effort

[9] Hong, G.Y. and Goh, T.N. “A Comparison of Six Sigma and
GQM Approaches in Software Development.” Journal of Six
Sigma and Competitive Advantage,1(1), 2004,
http://www.inderscience.com/storage/f125119371042861.pd
f

[10] Huffman Hayes, J., Patel, S., and Zhao, L., “A Metrics-
Based Software Maintenance Effort Model” In Proceedings
of the 8th European Conference on Software Maintenance
and Reengineering, Tampere, Finland, March 2004. pp. 254-
258.
http://selab.netlab.uky.edu/Homepage/csmr_ameffmo_hayes
_2004%5Eas_published.doc

[11] Inoue, K., Garg, P.K., Iida, H., Matsumoto, K. and Torii, K..
“Mega Software Engineering.” Accepted for PROFES 2005,
Finland, June 2005

[12] Jacobson, I., Griss, M.K., and Jonsson, P. Software Reuse:
Architecture, Process, and Organization for Business
Success. Addison-Wesley, Reading, MA, 1997

[13] Koskela, L., and Howell, G. “The Underlying Theory of
Project Management is Obsolete.” In Proceedings of the
PMI Research Conference, 2002, 293-302.
http://www.leanconstruction.org/pdf/ObsoleteTheory.pdf

[14] Lehman, M.M., Perry, D.E., and Ramil, J.F. “Implications of
Evolution Metrics on Software Maintenance.” ICSM'98,
November 1998.
http://www.ece.utexas.edu/~perry/work/papers/feast2.pdf

[15] Martin, R. “Validity vs. Reliability: Implications for
Management.” Rotman Magazine, Winter 2005.
http://www.rotman.utoronto.ca/integrativethinking/ValidityV
SReliability.pdf

[16] Morasca, S., Briand, L.C., Basili, V.R., Weyuker, E.J. and
Zelkowitz, M.V. "Comments on 'Towards a Framework for
Software Measurement Validation'." IEEE Transactions on
Software Engineering, 23(3), March 1997, 187-188

[17] Ohno, T. The Toyota Production System: Beyond Large-
Scale Production. Productivity Press, 1988.

[18] Park, R.E., Goethert, W.B., and Florac, W.A. Goal-Driven
Software Measurement —A Guidebook, Software
Engineering Institute, 1996.
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb00
2.96.pdf

[19] Perpich, J.M., Perry, D.E., Porter, A.A., Votta L.G., and
Wade, M.W. “Anywhere, Anytime Code Inspections: Using
the Web to Remove Inspection Bottlenecks in Large-Scale
Software Development.” 1997 International Software
Engineering Conference (ICSE97), Boston Mass, May 1997.
http://www.ece.utexas.edu/~perry/work/papers/icse97.pdf

[20] Poppendieck, M. and Poppendieck, T. Lean Software
Development: An Agile Toolkit. Addison-Wesley, Reading
MA, 2003.

[21] Siviy, J. “Six Sigma.” Software Engineering Institute, 2001.
http://www.sei.cmu.edu/str/descriptions/sigma6_body.html

[22] http://www.sourceforge.net
[23] Weiss, D. and Lai, C.T.R. Software Product-Line

Engineering: A Family Based Software Development
Process. Addison-Wesley, Boston, MA, 1999

