
A Framework for Describing and Understanding Mining
Tools in Software Development

Daniel M. German Davor Čubranić Margaret-Anne D. Storey
Software Engineering Group, Dept. of Computer Science

University of Victoria, Box 3055 STN CSC, Victoria BC
Canada V8W 3P6

{dmg, mstorey, cubranic}@uvic.ca

ABSTRACT
We propose a framework for describing, comparing and under-
standing tools for the mining of software repositories. Thefun-
damental premise of this framework is that mining should be done
by considering the specific needs of the users and the tasks tobe
supported by the mined information. First, different typesof users
have distinct needs, and these needs should be taken into account
by tool designers. Second, the data sources available, and mined,
will determine if those needs can be satisfied. Our frameworkis
based upon three main principles: the type of user, the objective of
the user, and the mined information. This framework has the fol-
lowing purposes: to help tool designers in the understanding and
comparison of different tools, to assist users in the assessment of
a potential tool; and to identify new research areas. We use this
framework to describe several mining tools and to suggest future
research directions.

1. INTRODUCTION
Understanding how programs evolve or how they continue to change
is a key requirement before undertaking any task in softwareengi-
neering or software maintenance. Software engineering is ahighly
collaborative activity and henceawarenessis an important factor
in being informed of what has changed and what is currently being
changed.

Software teams consist of many different stakeholders withdistinct
roles in their projects. A developer is interested in knowing how
related artifacts changed in the past and why these changes oc-
curred. A reengineer wants to consider how a system has evolved
so that they can learn from prior experiences before redesigning the
system. A manager is interested in understanding ongoing devel-
opment and a programmer’s previous work before assigning new
work. A researcher wants to study how large projects have evolved
so that the lessons learned can be applied to new projects. And a
tester wishes to know which parts of the program to test, and who
to talk to if they have questions or problems to report. Some of
the many questions these various stakeholders ask of a software
project can often be answered by other team members. In some

cases the relevant team members may no longer be available or
they may not remember important details adequately. Therefore,
answering these questions requires the extraction of information
from a project’s history to answer a particular stakeholder’s ques-
tions. Unfortunately, these questions often do not have a simple
answer. Details concerning concrete changes can be extracted from
a source code repository, but the intent behind these changes is not
easy to infer without considering other information sources and do-
ing some sort of deeper analysis.

During the past few years, many researchers have started to inves-
tigate how software repositories and other information sources can
be mined to help answer interesting questions which will inform
software engineering projects and processes. Most of thesere-
search projects originate from trying to solve particular problems
that satisfy different user needs.

In a recent paper [15], we presented a framework to describe how
awareness tools in software development use visual techniques to
present relevant information to different stakeholders. We used this
framework to provide a survey of visualization tools that provide
awareness of human activities in software engineering. Theframe-
work considered the intent behind these tools, their presentation
and interaction style, the information they presented, as well as pre-
liminary information on their effectiveness.

We noted in this earlier survey that the visualization toolsare lim-
ited in their effectiveness by the information available todisplay.
For example, if a tool only extracts information about software re-
leases, the tool will not be able to reveal who made the changes,
no matter how sophisticated the visualization technique may be.
Extracting information from most information sources is relatively
straightforward. But many questions can only be answered bycor-
relating information from multiple sources. The difficultyof suc-
cessfully mining pertinent information arises during thisanalysis.
It is challenging to know which questions to ask and how best to
answer the questions given that some of the information may be
incomplete or vague. An example is relating an email message
to a particular change in the source code when trying to discover
intent. Another problem is that such information repositories al-
though rich, are often very large and contain many details that are
not relevant to the problem at hand. It is also important to know
how to filter the information so that the user is not overwhelmed by
a deluge of data.

The goal of this paper, therefore, is to complement our visualiza-
tion framework by exploring and analyzing the issues related to the
mining aspects of software tools. In our previous work we stud-



ied the issues related to the presentation of information tothe user,
while in this paper we focus on the data available and its extrac-
tion. A framework for mining software repositories should enable
us and other researchers to understand how these diverse mining
tools are positioned within a broader research context. It should
provide a mechanism for tool researchers and designers to evalu-
ate and compare their work with other efforts, as well as illuminate
new research areas which could benefit software engineering.

In the first part of this paper, we summarize the different user roles
and the specific tasks that can be supported by mining software
repositories. We then explore, in depth, the different types of infor-
mation that can be beneficial to these user roles while considering
what kinds of analyses are needed to discover pertinent informa-
tion. Finally, we demonstrate the benefits of this frameworkby
comparing three diverse research tools that were independently de-
veloped by the three authors. Each of these three tools minesor
extracts information from software repositories to support software
engineering tasks. The framework helps us understand how these
tools may be improved and highlights the need for more analysis of
combined information sources.

2. A FRAMEWORK FOR COMPARISON
The framework for comparing software visualization tools of hu-
man activities is described in detail in [15]. Here we focus on just
three of its dimensions, where each attempts to describe a different
aspect of a repository mining tool. “Intent” explains who are the
expected users of the tool, and its main objective. “Information”
describes the specific sources that the tool mines and the type of
analysis made by the tool. This dimension is elaborated in more
detail as it is most relevant to mining software repositories. We
provide some examples of tools to strengthen the descriptions of
information extraction where necessary. Finally, the “infrastruc-
ture” addresses any special needs that the tool has.

2.1 Intent
We describe this dimension in detail in our other paper [15],but
summarize it here.

Role. This dimesion identifies who will use the tool. Roles include
developers, and whether they are a part of ateam that is co-located
or distributed. Other development roles includemaintainers, re-
verse engineers and reengineers. Managers, testers and docu-
menters can also improve their effectiveness by knowing about hu-
man activities in the project. And finallyresearchers may wish to
explore human activities to make recommendations for improved
tools and processes on future projects.

Time. Some tools provide information about activities occuring in
the distant or nearpast, while other other tools focus on presenting
information about thepresent. Other tools try to forecast thefuture
and predict which parts of the system are more prone to be modified
in the future.

Cognitive support. Cognitive support describes how a tool can
help improve human cognition [16]. In order to provide cognitive
support, it is essential to know which tasks require extra tool sup-
port. Specifically we need to know which questions are likelyto be
asked during these tasks and how the questions can be answered.
The questions that the various roles can ask about developerac-
tivities can be roughly classified into four categories:authorship,
rationale, chronology, andartifacts. Consequently, we consider

how mining tools can provide information according to thesefour
categories.

2.2 Information
As we mentioned previously, this dimension is thoroughly explored
as it is the most relevant to mining software repositories. To help
clarify the discussion when necessary, we give specific examples of
tools.

Change management.Configuration managementtools provide
support for building systems by selecting specific versionsof soft-
ware artifacts [7].Version controltools contribute to software proj-
ects in the following ways: software artifact management, change
management and team work support [18]. Change management is
an important data source because it providestraceability: it records
who performed a given change, and when it was performed. The
capabilities of the change management system will determine the
type of information that can be extracted. For instance, CVSdoes
not record when a given commit is a branch-merge and it does not
support transactional commits. Several heuristics have been cre-
ated to overcome these problems [4, 5].

Program code. We classify these tools into two categories. In
the first category we place those tools that treat the file as a unit,
and make no effort to understand its contents; we call these tools
programming-language-agnostic. On the other hand, tools are
programming-language-awareif they attempt to do some fact ex-
traction from the source code. We can further classify programming-
language-aware tools based upon:

• The language supported. Given the differences in syntax
and grammar, tools that are language-specific can only un-
derstand a fixed set of programming languages.

• Syntactic analysis. In this type of analysis the extractor does
not need to understand what the code does, only its syntax.
Examples of this analysis are the removal of comments from
the source code (to be able to distinguish if the changes af-
fected actual source code or only its documentation), and ex-
traction of the main entities of the code (such as packages,
classes, methods, functions, etc.).

• Semantic analysis. This analysis requires an understanding
of the intent of the source code and can be donedynamically
(by running the software under well defined test-cases) or
statically (by processing the source code). The generation of
a call graph, or the tracing of the execution of a program are
examples of this type of analysis.

Defect tracking. Many larger software projects rely on tracking
tools to help with the management ofdefects andchange requests.
Such systems often store metadata about who is assigned a task
and track the task’s completion. In some cases a defect manage-
ment tool is also used as a way to track activities and changesin re-
quirements. For example, Bugzilla includes a category for adefect
report called “improvement”, which is used by its users to submit a
change in requirements.

Correlated information. We have observed that the type of anal-
ysis and correlation can be classified into two broad categories:

• Within the data source. This type of analysis uses data from
one data source only and attempts to correlate different data



entities within it. In some cases this analysis strives to re-
construct relationships that were lost because they were not
explicitly recorded (such as grouping file revisions into com-
mits in CVS). In other cases, the new information is com-
puted from the data available in the source (for example, ex-
tracting the functions that were modified in a given change).
Some sources are very rich in the amount of information that
can be extracted and correlated from them (version control
systems are one example).

• Between the data sources. In some cases, there is explicit
information that allows a tool to correlate entities from two
different data sources. For example, it is not uncommon for
open source developers to record the corresponding Bugzilla
defect number in the log of the CVS commit that resolves
such defect, allowing a tool to correlate file revisions witha
defect. Frequently, there is no explicit information that cor-
relates information from different sources, and heuristics are
required to build these relationships. For example, which
email messages are relevant to a particular bug fix?.

Informal communication. Email is undoubtedly the most widely
used form of computer-mediated communication, and it is notsur-
prising that distributed software development projects rely on it ex-
tensively. In the early days of open-source software, a project mail-
ing list used to be one of the first, and often the only, communica-
tion and coordination mechanism used by development teams [2].
Today, specialized tools like Bugzilla have taken over someof its
functionality, but email remains an essential component ofdis-
tributed development process. For example, open-source projects
typically document all decisions on the project mailing list, even
when the original decision was reached in a different medium, or
such as face-to-face [8].

In recognition of the mailing list’s importance to a project, it is
usually archived and available on the web. However, messages in
the archive are typically organized chronologically or at best by
conversation thread. Even when text search of an archive is avail-
able, finding specific information can be difficult. For example, if
a developer wants to know why certain a function was added to
the project, then the challenge is to find all the messages that re-
late to the decision to add that function. The limited structure and
metadata of archived email mean that this source of information is
rarely mined. However, in their study of developer communication
in open-source projects, Gutwin et al. found that developers would
like to see improved access to email archives [8].

Various forms of text chat, such as IRC and IM, have become in-
creasingly important channels of communication in open-source
projects. For example, in 2000, neither Apache nor Mozilla projects
had official IRC channels used by the development team, and today
both do. Text chat is rarely archived (and when it is, it is usually in
another form, such as email messages, or as part of a Web page), but
this is likely to change as its importance is recognized. However,
chat has even less structure than email, so it may be considerably
more difficult to mine effectively.

Advances in computing technology are making it possible to archive
communication that used to be unarchivable. For example, Richter
et al. have demonstrated a system for automated capture of team
meetings [11]. Their system provides automated transcriptof the
spoken content, which the attendees can annotate on-the-flywith a
set of keywords from a predefined list.

Local history. Many local interactions are not captured by a project’s
repositories. However, a developer’s local history is a rich resource
for understanding human activities and how they relate to the soft-
ware under development. Recently, several researchers have been
investigating how mining this information source can assist in nav-
igation and program comprehension.

Two tools that address navigation support are Mylar and NavTracks.
Mylar [9] provides a degree-of-interest model for the Eclipse soft-
ware development environment. As a program artifact is selected,
its value increases while the value of other artifacts decrease. There-
fore, elements of more recent interest have a higher degree of in-
terest value. Mylar filters artifacts from the Package Explorer in
Eclipse that are below a certain threshold and thus helps a developer
focus on the artifacts in the workspace that are relevant to the cur-
rent activity. Navtracks [14] is a tool to support browsing through
software spaces. It provides recommendations of files that should
be of higher relevance to the user given the currently selected file.
It keeps track of the navigation history of a software developer,
forming associations between related files. Associations are cre-
ated when short cycles are detected between file navigation steps.
There are also several projects in the human interaction research
community that investigate how tracking interaction histories can
support future interactions [17, 1].

Schneider et al. describe how local interaction histories can be mined
to support team awareness [13]. They propose that sharing local
interactions among team members can benefit the following activ-
ities: coordinating team member activities such as undo, identi-
fying refactoring patterns and coordinating refactoring operations,
mining browsing patterns to identify expertise, and project manage-
ment. They describe a tool called Project Watcher and are currently
evaluating the benefits it brings to developers.

2.3 Infrastructure
This category addresses the environment needed to support the tool.

Required infrastructure. This category lists any requirement the
tools have, such as a given operating system, an IDE such as Eclipse,
a Web server and client, a database management system, etc.

Offline/Online. Tools can be classified depending upon whether
the software repository is required during its operation. For in-
stance, some tools mine the software repository ahead of time,
while others query the repository as a result of a user request.

Storage backend.If the tool operates offline, this category is used
to describe how it stores its required data. For example, some tools
use a SQL backend, other use XML or a proprietary format.

3. A COMPARISON OF MINING
We now use this framework to help us understand the intent and
mining capabilities of three tools designed by the authors.

3.1 softChange
Intent: The main goal of softChange is to help programmers, their
managers and software evolution researchers in understanding how
a software product has evolved since its conception [6]. With re-
spect totime, softChange concentrates only on the past. In terms of
cognitive support, it allows one to query who made a given change
to a software project (authorship), when (chronology) and, when-
ever available, the reason for the change (rationale). Theartifacts



that softChange tracks are files, and some types of entities in the
source code (such as functions, classes, and methods).

Information: softChange extracts and correlates three main sources
of information: the version control system (CVS), the defect track-
ing system (Bugzilla), and the software releases. softChange re-
constructs some of the information that is never recorded byCVS
(such as recreating commits), and it does syntactic analysis of the
source code. The analysis is static and it supports C/C++ andJava.
softChange also attempts to correlate information betweenCVS
and Bugzilla using defect numbers.

Infrastructure: softChange is an offline tool that uses an SQL
database for its storage needs. Its mining is done without any spe-
cial requirements beyond access to the software repository. One
particular problem with the type of mining that softChange does is
that it can retrieve a very large amount of data, and for that reason,
it is recommended that it operate on a local copy of the reposito-
ries (rather than query the repositories using the Internet, consum-
ing their bandwidth and computer resources). softChange has two
different front ends: one is Web based, and the other a Java appli-
cation.

3.2 Hipikat
Intent: Hipikat can be viewed as a recommender system for soft-
ware developers that draws its recommendations from a project’s
development history [3]. The tool is in particular intendedto help
newcomers to a software project. Therefore, in terms of thetimedi-
mension, it is concentrated on the past.Cognitive supportis largely
limited to answering questions aboutrationale and artifacts. In
terms of userroles, Hipikat is targeted almost exclusively at devel-
opers and maintainers.

Information: Hipikat is designed to draw on as many information
sources as possible and identify relationships between documents
both of same and different types. The information sources that are
currently supported in Hipikat are: version control system(CVS),
issue tracking system (Bugzilla), newsgroups and archivesof mail-
ing lists, and the project Web site. All four of these sourcesare
typically present in large open-source software projects.

Hipikat is programming language-agnostic. The only information
that it collects from files in the version control system is versioning
data, such as author, time of creation, and check-in comment.

Hipikat correlates information across sources using a set of heuris-
tics, such as matching for bug id in version check-in commentto
link file revisions in CVS and bug reports in Bugzilla. These heuris-
tics are based on observations of development practices in open-
source projects like Mozilla. Another method that Hipikat uses to
find documents that are related is by textual similarity.

Infrastructure: Repository mining in Hipikat works in offline mode:
Hipikat periodically checks project repositories for recent changes
and updates its model. The model is stored in an SQL database.
The front end is an Eclipse plug-in, although in principle itcould
be implemented for other environments, as long as it followsthe
communication protocol with the Hipikat server.

3.3 Xia/Creole
Intent: The main goal of the Xia [18] tool is to helpdevelopersun-
derstand version control activities by visualizing architectural dif-

ferences between two versions. Therefore, within thetime dimen-
sion, it focuses on the past, both near and distant. Xia provides
cognitive supportfor developers when they need answers to ques-
tions concerningauthorship, chronology, andartifacts. Several of
the visual techniques from Xia have been subsequently integrated
into the Creole visualization plug-in for Eclipse [10]. Thepurpose
of the Creole tool is to provide both high-level visualizations of the
architecture of a program as well as detailed views of dependencies
between software artifacts. Combining views from Xia with Creole
means that information concerning version control activities can be
viewed in concert with the dependency views in Creole.

Information: Creole represents software using a graph where nodes
in the graph correspond to software artifacts such as packages,
classes, methods, fields, etc., and edges correspond to relationships
such as “created by,” “calls,” and “accesses data”. Creole extracts
information from the CVS version control system and tags nodes
in the graph with the following information: authorship (author of
first commit, last commit, and the author with the most numberof
commits); time (time of first commit and most recent commit) and
the total number of commits. This information can then be used in
tooltips for the artifacts in the repository, or to filter nodes from the
view or to highlight them using a colour scale.

Infrastructure: Creole and Xia both work inonlinemode and di-
rectly access the CVS repositories. Creole extracts depedencies
from the source code using the Feat data extractor [12]. For large
projects, CVS queries can be very slow. Creole and Xia have both
been integrated with Eclipse as plugins. Creole is available for
download fromwww.thechiselgroup.org/creole.

4. DISCUSSION AND CONCLUSIONS
Tools need to be created around the needs of the developer. To
our knowledge, very little has been done in terms of asking de-
velopers what types of requirements they have, and few toolshave
been formally evaluated to determine if they are useful to their ex-
pected users. Many of the tools are created around the needs of
the researcher (somebody who is interested in understanding how
a software system has evolved). This is a natural phenomenonbe-
cause many of these tools are built by researchers to satisfytheir
own requirements. We could argue that by coincidence some of
the requirements of the managers are the same as those of the re-
searcher. Developers, however, have a different type of questions
that need answers. Researchers and managers are frequentlysat-
isfied with trends and aggregated data; the developer, on theother
hand, requires precise answers most of the time. Once the needs
of the potential users are better understood (theintent), then one
can determine what information should be mined and how it canbe
analyzed (theinformation ).

Some data sources are very rich, and others have been barely ex-
ploited. The more data retrieved, the more difficult it will be to
find relevant information for a given query (high recall) with little
noise (high precision). One can argue that the act of “mining” is
not the important problem that tools are trying to solve. Instead,
these tools are attempting to answer valid questions that their users
have by taking advantage of the historical information available.
Tapping into new sources of data should be done with relevance in
mind. How can this data be used to help answer a question? Who
is the potential user? What questions can it help answer?

The less structured or organized the historical information is, the



more difficult it is to use it effectively. We conjecture thatthe rea-
son why few tool use email messages (and other informal formsof
communication) is because they are difficult to correlate toother
types of information, and to answer questions posed by the user.
However, the informal forms of communication are being recorded,
and in the future, they could prove to be an important source of
valuable information.

We hope that this paper prompts discussion towards a common
nomenclature, and potentially, an ontology that can be usedto de-
scribe tools that mine software repositories. Another areathat we
believe should be considered is the selection of a set of applica-
tions that can serve as test cases or benchmarks (this has been al-
ready suggested during the previous Workshop in Mining Software
Repositories in 2004). It would then be possible to create a corpus
with copies of the software repositories, that can be sharedamong
the researchers; this will reduce the stress posed to the servers of
the projects that are to be mined.

Having a common set of benchmarks will also help to address an-
other problem in the area of mining software repositories. The ac-
tual task of retrieving “facts” from the repository is not consid-
ered to be an important research issue. Often, the act of mining
involves reverse engineering of the formats in which the data is
stored, scraping information from the Web, or trying to find some
regularity in the output of tools that access the repositories. In this
case (such as the syntactic and semantic analysis of source code) it
involves the use of tools created by other communities (suchas the
program analysis and comprehension communities); sometimes the
problem is getting the tools to work with the information retrieved
from a particular repository. The act of mining for facts is tedious
and error-prone. If the community agrees on a set of test cases,
the fact extraction can be done only once, and the resulting data
shared along with the copies of the repositories. This will allow re-
searchers more time to concentrate on the more important problems
related to the analysis and, correlation of this information always
keeping in mind the needs of the potential user.

5. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful
comments.

6. REFERENCES
[1] M. Chalmers, K. Rodden, and D. Brodbeck. The order of

things: Activity-centred information access. InProceedings
of 7th Intl. Conf. on the World Wide Web (WWW7), 1998.

[2] D. Čubranić and K. S. Booth. Coordinating open-source
software development. InEighth IEEE International
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 61–65, 1999.

[3] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. InProceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 82–91, 2004.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProceedings of the International Conference on
Software Maintenance, pages 23–32. IEEE Computer
Society Press, September 2003.

[5] D. M. German. Mining CVS repositories, the softChange
experience. In1st International Workshop on Mining
Software Repositories, 2004.

[6] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softChange. InProc. of the 16th
Internation Conference on Software Engineering and
Knowledge Engineering (SEKE 2004), pages 336–341, 2004.

[7] J. C. Grundy. Software architecture modeling, analysisand
implementation with SoftArch. Inthe Proceedings of the
25th Hawaii International Conference on System Sciences,
page 9051, 2001.

[8] C. Gutwin, R. Penner, and K. Schneider. Group awareness in
distributed software development. InProc. of the 2004 ACM
conference on Computer supported cooperative work, pages
72–81, 2004.

[9] M. Kersten and G. Murphy. Mylar: A degree-of-interest
model for IDEs. InProceedings of Aspect Oriented Software
Development, March 2005.

[10] R. Lintern, J. Michaud, M.-A. Storey, and X. Wu.
Plugging-in visualization: experiences integrating a
visualization tool with Eclipse. InProc. of the 2003 ACM
Symposium on Software Visualization, pages 47–56, 2003.

[11] H. Richter, G. D. Abowd, C. Miller, and H. Funk. Tagging
knowledge acquisition to facilitate knowledge traceability.
International Journal on Software Engineering and
Knowledge Engineering, 14(1):3–19, Feb. 2004.

[12] M. Robillard and G. Murphy. Feat: A tool for locating,
describing, and analyzing concerns in source code. In
Proceedings of 25th International Conference on Software
Engineering, May 2003.

[13] K. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining
a software developer’s local interaction history. In
Proceedings of 1st International Workshop on Mining
Software Repositories, 2004.

[14] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software space. InInternational Workshop on
Program Comprehension, 2005. To be presented.

[15] M.-A. Storey, D.Čubranić, and D. M. German. On the use of
visualization to support awareness of human activities in
software development:a survey and a framework. In
Proceedings of the 2nd ACM Symposium on Software
Visualization, 2005. To be presented.

[16] A. Walenstein. Observing and measuring cognitive support:
Steps toward systematic tool evaluation and engineering. In
Proc. of the 11th International Workshop on Program
Comprehension (IWPC’03), pages 185–195, 2003.

[17] A. Wexelblat. Communities through time: Using historyfor
social navigation. In T. Ishida, editor,Lecture Notes in
Computer Science, volume 1519, pages 281–298. Springer
Verlag, 1998.

[18] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance:
Version control knowledge extraction. InProc. 11th Working
Conference on Reverse Engineering, pages 90–99, 2004.


