A Framework for Describing and Understanding Mining
Tools in Software Development

Daniel M. German Davor Cubranic Margaret-Anne D. Storey
Software Engineering Group, Dept. of Computer Science
University of Victoria, Box 3055 STN CSC, Victoria BC
Canada V8W 3P6

{dmg, mstorey, cubranicy@uvic.ca

ABSTRACT cases the relevant team members may no longer be available or
We propose a framework for describing, comparing and under- they may not remember important details adequately. Toezef
standing tools for the mining of software repositories. Tine- answering these questions requires the extraction ofrirdtion

damental premise of this framework is that mining should eed ~ from & project's history to answer a particular stakehotdgues-
by considering the specific needs of the users and the tadles to ~ tions. Unfortunately, these questions often do not havengplsi
supported by the mined information. First, different typésisers answer. Details concerning concrete changes can be edrizom
have distinct needs, and these needs should be taken imoracc & source code repository, but the intent behind these chasiget
by tool designers. Second, the data sources available, aretim easy to infer without considering other information sosrard do-
will determine if those needs can be satisfied. Our framevimrk ing some sort of deeper analysis.

based upon three main principles: the type of user, the txeaf

the user, and the mined information. This framework has ¢he f ~ During the past few years, many researchers have starteues-i
lowing purposes: to help tool designers in the understandird tigate how software repositories and other informatiorreesican
comparison of different tools, to assist users in the agsessof be mined to help answer interesting questions which witbrimf
a potential tool; and to identify new research areas. We hise t ~SOftware engineering projects and processes. Most of tese
framework to describe several mining tools and to suggdstdu Search projects originate from trying to solve particulestems

research directions. that satisfy different user needs.

In a recent paper [15], we presented a framework to descobe h
1. INTRODUCTION awareness tools in software development use visual tecbsitp
Understanding how programs evolve or how they continueangh present relevant information to different stakeholders.uskd this
is a key requirement before undertaking any task in softeag- framework to provide a survey of visualization tools thadvpde
neering or software maintenance. Software engineerindnighdy awareness of human activities in software engineering.fiemee-

collaborative activity and hencawarenesss an important factor work considered the intent behind these tools, their ptaten
in being informed of what has changed and what is currenilygoe ~ and interaction style, the information they presented, elsag pre-

changed. liminary information on their effectiveness.
Software teams consist of many different stakeholders eigtinct We noted in this earlier survey that the visualization ta@oks lim-
roles in their projects. A developer is interested in knayvirow ited in their effectiveness by the information availabledisplay.

related artifacts changed in the past and why these chanmges o For example, if a tool only extracts information about seaiftevre-
curred. A reengineer wants to consider how a system hasexyolv leases, the tool will not be able to reveal who made the ctgnge
so that they can learn from prior experiences before redegjghe no matter how sophisticated the visualization techniqug be
system. A manager is interested in understanding ongoingl-de Extracting information from most information sources iktiwely
opment and a programmer’s previous work before assignimg ne straightforward. But many questions can only be answerezbby
work. A researcher wants to study how large projects havlvego relating information from multiple sources. The difficulty suc-
so that the lessons learned can be applied to new projecd.aAn cessfully mining pertinent information arises during taiglysis.
tester wishes to know which parts of the program to test, dmol w It is challenging to know which questions to ask and how best t
to talk to if they have questions or problems to report. Soime o answer the questions given that some of the information neay b
the many questions these various stakeholders ask of asseftw incomplete or vague. An example is relating an email message
project can often be answered by other team members. In someto a particular change in the source code when trying to deco
intent. Another problem is that such information reposé®ral-
though rich, are often very large and contain many details dhe
not relevant to the problem at hand. It is also important tovkn
how to filter the information so that the user is not overwhery
a deluge of data.

The goal of this paper, therefore, is to complement our Vizaa
tion framework by exploring and analyzing the issues rel&dehe
mining aspects of software tools. In our previous work welstu

ied the issues related to the presentation of informatidheauser,

while in this paper we focus on the data available and itsaextr

tion. A framework for mining software repositories shoulthble

us and other researchers to understand how these divergggmin

tools are positioned within a broader research contexthdtsl

provide a mechanism for tool researchers and designersato-ev

ate and compare their work with other efforts, as well asrlhate
new research areas which could benefit software engineering

In the first part of this paper, we summarize the different uskes

and the specific tasks that can be supported by mining saftwar

repositories. We then explore, in depth, the different sypiinfor-
mation that can be beneficial to these user roles while ceriaml
what kinds of analyses are needed to discover pertineniniao
tion. Finally, we demonstrate the benefits of this framewlayk
comparing three diverse research tools that were indepégdiz-

veloped by the three authors. Each of these three tools mines

extracts information from software repositories to suppoftware

engineering tasks. The framework helps us understand heseth

tools may be improved and highlights the need for more aisabfs
combined information sources.

2. AFRAMEWORK FOR COMPARISON

The framework for comparing software visualization todlsho-
man activities is described in detail in [15]. Here we focagust
three of its dimensions, where each attempts to describféeaatit
aspect of a repository mining tool. “Intent” explains whe dne
expected users of the tool, and its main objective. “Infdiomd

describes the specific sources that the tool mines and tleedfyp
analysis made by the tool. This dimension is elaborated iremo

detail as it is most relevant to mining software repositriéVe
provide some examples of tools to strengthen the desangptid
information extraction where necessary. Finally, the rastruc-
ture” addresses any special needs that the tool has.

2.1 Intent
We describe this dimension in detail in our other paper [bb},
summarize it here.

Role. This dimesion identifies who will use the tool. Roles include
developers, and whether they are a part ofeam that is co-located

or distributed. Other development roles includeintainers, re-
verse engineers and reengineers. Managers, testers and docu-

menterscan also improve their effectiveness by knowing about hu-

man activities in the project. And finallesearchers may wish to

explore human activities to make recommendations for invguto

tools and processes on future projects.

how mining tools can provide information according to théme
categories.

2.2 Information

As we mentioned previously, this dimension is thoroughlylered
as it is the most relevant to mining software repositories.h@&lp
clarify the discussion when necessary, we give specific plesrof
tools.

Change management.Configuration managemenbols provide
support for building systems by selecting specific versmfrsoft-
ware artifacts [7]Version controkools contribute to software proj-
ects in the following ways: software artifact managemehange
management and team work support [18]. Change management is
an important data source because it providaseability: it records
who performed a given change, and when it was performed. The
capabilities of the change management system will deteritiia
type of information that can be extracted. For instance, @U&s

not record when a given commit is a branch-merge and it does no
support transactional commits. Several heuristics haea loee-
ated to overcome these problems [4, 5].

Program code. We classify these tools into two categories. In
the first category we place those tools that treat the file asita u
and make no effort to understand its contents; we call theds t
programming-language-agnostic On the other hand, tools are
programming-language-awareif they attempt to do some fact ex-
traction from the source code. We can further classify @ogning-
language-aware tools based upon:

e The language supported. Given the differences in syntax
and grammar, tools that are language-specific can only un-
derstand a fixed set of programming languages.

e Syntacticanalysis. In this type of analysis the extractor does
not need to understand what the code does, only its syntax.
Examples of this analysis are the removal of comments from
the source code (to be able to distinguish if the changes af-
fected actual source code or only its documentation), and ex
traction of the main entities of the code (such as packages,
classes, methods, functions, etc.).

e Semantic analysis. This analysis requires an understanding
of the intent of the source code and can be didymamically
(by running the software under well defined test-cases) or
statically (by processing the source code). The generation of
a call graph, or the tracing of the execution of a program are
examples of this type of analysis.

Defect tracking. Many larger software projects rely on tracking
tools to help with the managementdsfects andchange requests.

Such systems often store metadata about who is assigneét a tas
and track the task’s completion. In some cases a defect manag
ment tool is also used as a way to track activities and chainges
quirements. For example, Bugzilla includes a category fiefact
report called “improvement”, which is used by its users torsit a
change in requirements.

Time. Some tools provide information about activities occuring i
the distant or negpast, while other other tools focus on presenting
information about theresent. Other tools try to forecast tHature
and predict which parts of the system are more prone to befiaddi
in the future.

Cognitive support. Cognitive support describes how a tool can
help improve human cognition [16]. In order to provide cdiyei
support, it is essential to know which tasks require extoh $op-
port. Specifically we need to know which questions are likelige Correlated information. We have observed that the type of anal-
asked during these tasks and how the questions can be adswere YSis and correlation can be classified into two broad categjor

The questions that the various roles can ask about devesmper
tivities can be roughly classified into four categoriesthorship,
rationale, chronology, andartifacts. Consequently, we consider

e Within the data source. This type of analysis uses data from
one data source only and attempts to correlate differeat dat

entities within it. In some cases this analysis strives to re
construct relationships that were lost because they were no
explicitly recorded (such as grouping file revisions intonco
mits in CVS). In other cases, the new information is com-
puted from the data available in the source (for example, ex-
tracting the functions that were modified in a given change).
Some sources are very rich in the amount of information that
can be extracted and correlated from them (version control
systems are one example).

Between the data sources. In some cases, there is explicit
information that allows a tool to correlate entities fronmotw
different data sources. For example, it is not uncommon for
open source developers to record the corresponding Bagzill
defect number in the log of the CVS commit that resolves
such defect, allowing a tool to correlate file revisions vdth
defect. Frequently, there is no explicit information that-c
relates information from different sources, and heursstie
required to build these relationships. For example, which
email messages are relevant to a particular bug fix?.

Informal communication. Email is undoubtedly the most widely
used form of computer-mediated communication, and it issoot
prising that distributed software development projedig oa it ex-
tensively. In the early days of open-source software, aptapail-
ing list used to be one of the first, and often the only, comicami
tion and coordination mechanism used by development teans [
Today, specialized tools like Bugzilla have taken over safnits
functionality, but email remains an essential componentlisf
tributed development process. For example, open-sounjegs
typically document all decisions on the project mailing, lisven
when the original decision was reached in a different mediom
such as face-to-face [8].

In recognition of the mailing list's importance to a projeitis
usually archived and available on the web. However, messiage
the archive are typically organized chronologically or astbby
conversation thread. Even when text search of an archiveais a
able, finding specific information can be difficult. For exdeypf

a developer wants to know why certain a function was added to
the project, then the challenge is to find all the messagegdha
late to the decision to add that function. The limited stoetand
metadata of archived email mean that this source of infaomas
rarely mined. However, in their study of developer commation
in open-source projects, Gutwin et al. found that devel®peuld
like to see improved access to email archives [8].

Various forms of text chat, such as IRC and IM, have become in-
creasingly important channels of communication in opeurs®
projects. For example, in 2000, neither Apache nor Moziltgqrts
had official IRC channels used by the development team, atayto
both do. Text chat is rarely archived (and when it is, it isalisuin
another form, such as email messages, or as part of a Weh page)
this is likely to change as its importance is recognized. &,
chat has even less structure than email, so it may be coabigier
more difficult to mine effectively.

Advances in computing technology are making it possibledhige
communication that used to be unarchivable. For exampleht&i

et al. have demonstrated a system for automated capturarof te
meetings [11]. Their system provides automated transofipiie
spoken content, which the attendees can annotate on-thettfiya
set of keywords from a predefined list.

Local history. Many local interactions are not captured by a project’s
repositories. However, a developer’s local history is h riesource

for understanding human activities and how they relate ecstift-
ware under development. Recently, several researcheeshiegan
investigating how mining this information source can ddgisav-
igation and program comprehension.

Two tools that address navigation support are Mylar and KeokE.
Mylar [9] provides a degree-of-interest model for the Esfisoft-
ware development environment. As a program artifact isceete
its value increases while the value of other artifacts desseThere-
fore, elements of more recent interest have a higher dedrige o
terest value. Mylar filters artifacts from the Package Ergridn
Eclipse that are below a certain threshold and thus helpsaateer
focus on the artifacts in the workspace that are relevarfidatr-
rent activity. Navtracks [14] is a tool to support browsifgaugh
software spaces. It provides recommendations of files tiaild
be of higher relevance to the user given the currently sedefite.
It keeps track of the navigation history of a software depetp
forming associations between related files. Associatioascee-
ated when short cycles are detected between file navigaeps.s
There are also several projects in the human interacticzares
community that investigate how tracking interaction hitte can
support future interactions [17, 1].

Schneider et al. describe how local interaction historégestie mined
to support team awareness [13]. They propose that sharaad lo
interactions among team members can benefit the followitig-ac
ities: coordinating team member activities such as undentie
fying refactoring patterns and coordinating refactoripgmations,
mining browsing patterns to identify expertise, and projeanage-
ment. They describe a tool called Project Watcher and aretraily
evaluating the benefits it brings to developers.

2.3 Infrastructure
This category addresses the environment needed to suppdoi.

Required infrastructure. This category lists any requirement the
tools have, such as a given operating system, an IDE sucHips&c
a Web server and client, a database management system, etc.

Offline/Online. Tools can be classified depending upon whether
the software repository is required during its operatioror iR-
stance, some tools mine the software repository ahead @&, tim
while others query the repository as a result of a user reques

Storage backend.f the tool operates offline, this category is used
to describe how it stores its required data. For exampleggoonis
use a SQL backend, other use XML or a proprietary format.

3. A COMPARISON OF MINING

We now use this framework to help us understand the intent and
mining capabilities of three tools designed by the authors.

3.1 softChange

Intent: The main goal of softChange is to help programmers, their
managers and software evolution researchers in undenstginolv

a software product has evolved since its conception [6].h\két
spect taime softChange concentrates only on the past. In terms of
cognitive supportit allows one to query who made a given change
to a software projectauthorship), when ¢hronology and, when-
ever available, the reason for the changgignale). Theartifacts

that softChange tracks are files, and some types of entitiései
source code (such as functions, classes, and methods).

ferences between two versions. Therefore, withintiime dimen-
sion it focuses on the past, both near and distant. Xia provides
cognitive supporfor developers when they need answers to ques-

Information: softChange extracts and correlates three main sourcedions concerningwthorship chronology andartifacts. Several of

of information: the version control system (CVS), the deteack-
ing system (Bugzilla), and the software releases. softGhan-
constructs some of the information that is never recorde@4$
(such as recreating commits), and it does syntactic asabfshe
source code. The analysis is static and it supports C/C+tavel
softChange also attempts to correlate information betwe¥s
and Bugzilla using defect numbers.

Infrastructure: softChange is an offline tool that uses an SQL
database for its storage needs. Its mining is done withouspe-
cial requirements beyond access to the software reposiOne
particular problem with the type of mining that softChangeslis
that it can retrieve a very large amount of data, and for thason,

it is recommended that it operate on a local copy of the réposi
ries (rather than query the repositories using the Integmetsum-
ing their bandwidth and computer resources). softChangevia
different front ends: one is Web based, and the other a Jpla ap
cation.

3.2 Hipikat

Intent: Hipikat can be viewed as a recommender system for soft-
ware developers that draws its recommendations from agiioje
development history [3]. The tool is in particular intendechelp
newcomers to a software project. Therefore, in terms ofithedi-
mension, itis concentrated on the pa3bgnitive supports largely
limited to answering questions aborationale and artifacts In
terms of useroles Hipikat is targeted almost exclusively at devel-
opers and maintainers.

Information: Hipikat is designed to draw on as many information
sources as possible and identify relationships betweeandeots
both of same and different types. The information sourcasdre
currently supported in Hipikat are: version control syst{@ws),
issue tracking system (Bugzilla), newsgroups and arclufesail-
ing lists, and the project Web site. All four of these souraes
typically present in large open-source software projects.

Hipikat is programming language-agnostic. The only infation
that it collects from files in the version control system issiening
data, such as author, time of creation, and check-in comment

Hipikat correlates information across sources using afdeturis-
tics, such as matching for bug id in version check-in comntent
link file revisions in CVS and bug reports in Bugzilla. Theseitis-
tics are based on observations of development practicepan-o
source projects like Mozilla. Another method that Hipikaes to
find documents that are related is by textual similarity.

Infrastructure: Repository mining in Hipikat works in offline mode:
Hipikat periodically checks project repositories for necehanges
and updates its model. The model is stored in an SQL database
The front end is an Eclipse plug-in, although in principleauld

be implemented for other environments, as long as it folltves
communication protocol with the Hipikat server.

3.3 Xia/Creole

Intent: The main goal of the Xia [18] tool is to helfevelopersin-
derstand version control activities by visualizing arebitral dif-

the visual techniques from Xia have been subsequently riated
into the Creole visualization plug-in for Eclipse [10]. Therpose
of the Creole tool is to provide both high-level visualipais of the
architecture of a program as well as detailed views of degrecids
between software artifacts. Combining views from Xia witie@e
means that information concerning version control a¢éigitan be
viewed in concert with the dependency views in Creole.

Information: Creole represents software using a graph where nodes
in the graph correspond to software artifacts such as paskag
classes, methods, fields, etc., and edges correspondtiomskaps
such as “created by,” “calls,” and “accesses data”. Crextieaets
information from the CVS version control system and tagsesod
in the graph with the following information: authorship ¢aaor of
first commit, last commit, and the author with the most nundder
commits); time (time of first commit and most recent commit)l a
the total number of commits. This information can then bealuse
tooltips for the artifacts in the repository, or to filter rsdfrom the
view or to highlight them using a colour scale.

Infrastructure: Creole and Xia both work ionline mode and di-
rectly access the CVS repositories. Creole extracts depeze
from the source code using the Feat data extractor [12]. d&gel
projects, CVS queries can be very slow. Creole and Xia hatle bo
been integrated with Eclipse as plugins. Creole is avaldbt
download fromwww.thechiselgroup.org/creale

4. DISCUSSION AND CONCLUSIONS

Tools need to be created around the needs of the developer. To
our knowledge, very little has been done in terms of asking de
velopers what types of requirements they have, and few taole
been formally evaluated to determine if they are useful &ar tbx-
pected users. Many of the tools are created around the néeds o
the researcher (somebody who is interested in understaindivwv

a software system has evolved). This is a natural phenomiagon
cause many of these tools are built by researchers to sd#tisify

own requirements. We could argue that by coincidence some of
the requirements of the managers are the same as those ef the r
searcher. Developers, however, have a different type cftiures

that need answers. Researchers and managers are frecgantly
isfied with trends and aggregated data; the developer, ootlies
hand, requires precise answers most of the time. Once thisnee
of the potential users are better understood ftitent), then one

can determine what information should be mined and how ibean
analyzed (thénformation).

Some data sources are very rich, and others have been barely e
ploited. The more data retrieved, the more difficult it wié o

find relevant information for a given query (high recall) klittle
noise (high precision). One can argue that the act of “mihiag

‘not the important problem that tools are trying to solve.tdad,
these tools are attempting to answer valid questions teatubers
have by taking advantage of the historical information ladé.
Tapping into new sources of data should be done with relevamc
mind. How can this data be used to help answer a question? Who
is the potential user? What questions can it help answer?

The less structured or organized the historical infornmatf the

more difficult it is to use it effectively. We conjecture thhe rea-

son why few tool use email messages (and other informal fofms

communication) is because they are difficult to correlatetteer

types of information, and to answer questions posed by tke us

However, the informal forms of communication are being rded,

and in the future, they could prove to be an important soufce o

valuable information.

(5]

(6]

D. M. German. Mining CVS repositories, the softChange
experience. Iist International Workshop on Mining
Software Repositorie2004.

D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softChange.Rmoc. of the 16th
Internation Conference on Software Engineering and
Knowledge Engineering (SEKE 200#pages 336—341, 2004.

We hope that this paper prompts discussion towards a common [7] J. C. Grundy. Software architecture modeling, analgsid
nomenclature, and potentially, an ontology that can be tsee-

scribe tools that mine software repositories. Another énaawe
believe should be considered is the selection of a set ofcppl

tions that can serve as test cases or benchmarks (this hasbee

ready suggested during the previous Workshop in Miningvéo
Repositories in 2004). It would then be possible to createrpus
with copies of the software repositories, that can be shanechg
the researchers; this will reduce the stress posed to thersesf
the projects that are to be mined.

Having a common set of benchmarks will also help to address an

other problem in the area of mining software repositoridse @c-
tual task of retrieving “facts” from the repository is notnsid-

ered to be an important research issue. Often, the act ohgini

involves reverse engineering of the formats in which theadsat
stored, scraping information from the Web, or trying to fimdne
regularity in the output of tools that access the repogtorin this
case (such as the syntactic and semantic analysis of scadeg it
involves the use of tools created by other communities (sisdhe
program analysis and comprehension communities); sorastine
problem is getting the tools to work with the informationrieted
from a particular repository. The act of mining for factseslious

and error-prone. If the community agrees on a set of testscase
the fact extraction can be done only once, and the resultatg d

shared along with the copies of the repositories. This Wilare-
searchers more time to concentrate on the more importablgms
related to the analysis and, correlation of this informatidwvays
keeping in mind the needs of the potential user.

5.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their fidlp
comments.

6.

(1]

(2]

(3]

[4]

REFERENCES

M. Chalmers, K. Rodden, and D. Brodbeck. The order of
things: Activity-centred information access.Pmnoceedings
of 7th Intl. Conf. on the World Wide Web (WW\WIRQ98.

D. Cubranit and K. S. Booth. Coordinating open-source
software development. IBighth IEEE International
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprisegpages 61-65, 1999.

D. éubranié, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. IfProceedings of the ACM Conference on
Computer Supported Cooperative Woplkges 82-91, 2004.

M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. IfProceedings of the International Conference on
Software Maintenancgages 23-32. IEEE Computer
Society Press, September 2003.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

implementation with SoftArch. Ithe Proceedings of the
25th Hawaii International Conference on System Sciences
page 9051, 2001.

C. Gutwin, R. Penner, and K. Schneider. Group awaremess i
distributed software development. Broc. of the 2004 ACM
conference on Computer supported cooperative yoakes
72-81, 2004.

M. Kersten and G. Murphy. Mylar: A degree-of-interest
model for IDEs. InProceedings of Aspect Oriented Software
DevelopmentMarch 2005.

R. Lintern, J. Michaud, M.-A. Storey, and X. Wu.
Plugging-in visualization: experiences integrating a
visualization tool with Eclipse. IiProc. of the 2003 ACM
Symposium on Software Visualizatipages 47-56, 2003.

H. Richter, G. D. Abowd, C. Miller, and H. Funk. Tagging
knowledge acquisition to facilitate knowledge traceapili
International Journal on Software Engineering and
Knowledge Engineerindl4(1):3—-19, Feb. 2004.

M. Robillard and G. Murphy. Feat: A tool for locating,
describing, and analyzing concerns in source code. In
Proceedings of 25th International Conference on Software
Engineering May 2003.

K. Schneider, C. Gutwin, R. Penner, and D. Paquetteindin
a software developer’s local interaction history. In
Proceedings of 1st International Workshop on Mining
Software Repositorie2004.

J. Singer, R. Elves, and M.-A. Storey. Navtracks: Suppg
navigation in software space. International Workshop on
Program Comprehensior2005. To be presented.

M.-A. Storey, D.Cubrani¢, and D. M. German. On the use of
visualization to support awareness of human activities in
software development:a survey and a framework. In
Proceedings of the 2nd ACM Symposium on Software
Visualization 2005. To be presented.

A. Walenstein. Observing and measuring cognitive supp
Steps toward systematic tool evaluation and engineenng. |
Proc. of the 11th International Workshop on Program
Comprehension (IWPC’03pages 185-195, 2003.

A. Wexelblat. Communities through time: Using histdoy
social navigation. In T. Ishida, editdrecture Notes in
Computer Sciencevolume 1519, pages 281-298. Springer
Verlag, 1998.

X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance:
Version control knowledge extraction. Rroc. 11th Working
Conference on Reverse Engineeripgges 90-99, 2004.

